- Award ID(s):
- 2013093
- NSF-PAR ID:
- 10335409
- Date Published:
- Journal Name:
- ASCE Construction Research Congress 2022
- Page Range / eLocation ID:
- 443 to 452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The main energy end uses in commercial buildings include cooling, heating, and lighting. These energy consuming systems, however, can be substantially impacted by environmental parameters and sensor inputs when a building is being dynamically controlled. This study aims to conduct a sensitivity analysis on the energy consumption of a small commercial office building with an integrated control system, including automated shade devices and dimmable lighting. Previous studies have focused on sensitivity of automated shades energy impacts, based on glare level, solar irradiation, available daylighting and solar penetration; others have assessed the sensitivity of dimmable lighting on energy use. The focus of this study is to assess the impact of adjusting illuminance sensor location, and sensor rotation (towards or away from the exterior windows), for small office buildings with integrated shading and lighting controls in different ASHRAE climate zones.more » « less
-
Buildings in the U.S. are responsible for approximately 40% of energy and 70% of the electricity consumption. To address rising greenhouse gas emissions and climate changes, various studies have explored strategies to reduce energy consumption in buildings. One opportunity to improve the building envelope performance is through improvements to fenestrations, particularly complex multi-layer fenestration systems for exterior windows. Windows are the least thermally efficient of all components in a typical building envelope. Windows also permit solar radiation into a building, which significantly increases the building energy consumption during the summer season. Meanwhile, windows are necessary to provide occupants with natural light, a view to the outside, and to support productivity. Thus, there is a need to strike a balance between energy savings, and the thermal and visual comfort impacted by windows. Traditionally, shading devices are one method used to adjust the amount of heat and light entering an interior space. However, such shading devices are typically operated manually by occupants, and are seldom used effectively over time. Currently the building energy simulation program EnergyPlus, has limited capabilities to model shading devices, and more limited abilities to model dynamic fenestrations. In this study, thus, we propose to model and validate several types of automated multi-layer fenestration elements, using co-simulation of EnergyPlus and Radiance using laboratory-collected data. EnergyPlus was used to model energy consumption and thermal comfort while Radiance was used to model lighting levels. BCVTB was used to interface between EnergyPlus and Radiance to facilitate co-simulation. To validate the models, experimental data was collected from 5 illuminance sensors in an exterior office space located in a test facility in Ankeny, IA. This model methodology can be used to improve the flexibility and modeling capabilities of dynamic fenestration elements for building energy performance evaluation methods.more » « less
-
Lighting is a major component of energy consumption in controlled environment agriculture (CEA) operations. Skyscraper farms (multilevel production in buildings with transparent glazing) have been proposed as alternatives to greenhouse or plant factories (opaque warehouses) to increase space-use efficiency while accessing some natural light. However, there are no previous models on natural light availability and distribution in skyscraper farms. This study employed climate-based daylight modeling software and the Typical Meteorological Year (TMY) dataset to investigate the effects of building geometry and context shading on the availability and spatial distribution of natural light in skyscraper farms in Los Angeles (LA) and New York City (NYC). Electric energy consumption for supplemental lighting in 20-storey skyscraper farms to reach a daily light integral target was calculated using simulation results. Natural lighting in our baseline skyscraper farms without surrounding buildings provides 13% and 15% of the light required to meet a target of 17 mol·m−2·day−1. More elongated buildings may meet up to 27% of the lighting requirements with natural light. However, shading from surrounding buildings can reduce available natural light considerably; in the worst case, natural light only supplies 5% of the lighting requirements. Overall, skyscraper farms require between 4 to 11 times more input for lighting than greenhouses per crop canopy area in the same location. We conclude that the accessibility of natural light in skyscraper farms in dense urban settings provides little advantage over plant factories.more » « less
-
In recent years, the focus has been on enhancing user comfort in commercial buildings while cutting energy costs. Efforts have mainly centered on improving HVAC systems, the central control system. However, it’s evident that HVAC alone can’t ensure occupant comfort. Lighting, blinds, and windows, often overlooked, also impact energy use and comfort. This paper introduces a holistic approach to managing the delicate balance between energy efficiency and occupant comfort in commercial buildings. We present
OCTOPUS , a system employing a deep reinforcement learning (DRL) framework using data-driven techniques to optimize control sequences for all building subsystems, including HVAC, lighting, blinds, and windows.OCTOPUS ’s DRL architecture features a unique reward function facilitating the exploration of tradeoffs between energy usage and user comfort, effectively addressing the high-dimensional control problem resulting from interactions among these four building subsystems. To meet data training requirements, we emphasize the importance of calibrated simulations that closely replicate target-building operational conditions. We trainOCTOPUS using 10-year weather data and a calibrated building model in the EnergyPlus simulator. Extensive simulations demonstrate thatOCTOPUS achieves substantial energy savings, outperforming state-of-the-art rule-based and DRL-based methods by 14.26% and 8.1%, respectively, in a LEED Gold Certified building while maintaining desired human comfort levels. -
The rooftop is a default location for photovoltaic solar panels and is often not enough to offset increasing building energy consumption. The vertical surface of urban buildings offers a prime location to harness solar energy. The overall goal of this research is to evaluate power production potentials and multi-functionalities of a 3D building integrated photovoltaic (BIPV) facade system. The traditional BIPV which is laminated with window glass obscures the view-out and limits daylight penetration. Unlike the traditional system, the 3D solar module was configured to reflect the sun path geometry to maximize year-round solar exposure and energy production. In addition, the 3D BIPV façade offers multiple functionalities – solar regulations, daylighting penetration, and view-out, resulting in energy savings from heating, cooling, and artificial lighting load. Its ability to produce solar energy offsets building energy consumption and contributes to net-zero-energy buildings. Both solar simulations and physical prototyping were carried out to investigate the promises and challenges of the 3D BIPV façade system compared to a traditional BIPV system. With climate emergency on the rise and the need for clean, sustainable energy becoming ever more pressing, the 3D BIPV façade in this paper offers a creative approach to tackling the problems of power production, building energy savings, and user health and wellbeing.more » « less