skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2013093

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With commercial and residential buildings accounting for approximately 40% of the energy and 70% of the electricity consumption in the United States, there are substantial opportunities to improve energy efficiency in these buildings. Similarly, buildings also account for the large majority of electricity demand, particularly during peak use hours. As the electric grid becomes increasingly supported by renewable energy, buildings are ideal for supporting demand-side management, allowing for the electricity demand to meet the variable levels of electricity supply. Integrated controls of various building energy system components, including HVAC (Heating Ventilation and Air Conditioning), lighting, and shading devices, combined with advanced sensor and control technologies, can help to optimize system operations. This research aims to study the impact of integrated HVAC, lighting, and shading device controls, to estimate energy and demand saving in typical small office buildings in the U.S. This is achieved through a multi-step modeling process, including daylight simulation using Radiance to evaluate available daylight for each zone, then EnergyPlus to develop and implement various controls and estimate energy and demand savings using the Radiance results as input. The result of this work provides insights for a variety of stakeholders in the building, utility and grid operator industries and quantifies the potential benefit of integrated systems. 
    more » « less
  2. The main energy end uses in commercial buildings include cooling, heating, and lighting. These energy consuming systems, however, can be substantially impacted by environmental parameters and sensor inputs when a building is being dynamically controlled. This study aims to conduct a sensitivity analysis on the energy consumption of a small commercial office building with an integrated control system, including automated shade devices and dimmable lighting. Previous studies have focused on sensitivity of automated shades energy impacts, based on glare level, solar irradiation, available daylighting and solar penetration; others have assessed the sensitivity of dimmable lighting on energy use. The focus of this study is to assess the impact of adjusting illuminance sensor location, and sensor rotation (towards or away from the exterior windows), for small office buildings with integrated shading and lighting controls in different ASHRAE climate zones. 
    more » « less