skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SkinKit: Construction Kit for On-Skin Interface Prototyping
The emergence of on-skin interfaces has created an opportunity for seamless, always-available on-body interactions. However, developing a new fabrication process for on-skin interfaces can be time-consuming, challenging to incorporate new features, and not available for quick form-factor preview through prototyping. We introduce SkinKit, the first construction toolkit for on-skin interfaces, which enables fast, low-fidelity prototyping with a slim form factor directly applicable to the skin. SkinKit comprises modules consisting of skin-conformable base substrates and reusable Flexible Printed Circuits Board (FPCB) blocks. They are easy to attach and remove under tangible plug-and-play construction but still offer robust conductive connections in a slim form. Further, SkinKit aims to lower the barrier to entry in building on-skin interfaces without demanding technical expertise. It leverages a variety of preprogrammed modules connected in unique sequences to achieve various function customizations. We describe our iterative design and development process of SkinKit, comparing materials, connection mechanisms, and modules reflecting on its capability. We report results from single- and multi- session workshops with 34 maker participants spanning STEM and design backgrounds. Our findings reveal how diverse maker populations engage in on-skin interface design, what types of applications they choose to build, and what challenges they faced.  more » « less
Award ID(s):
2047249
PAR ID:
10335478
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
5
Issue:
4
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Applying customized epidermal electronics closely onto the human skin offers the potential for biometric sensing and unique, always-available on-skin interactions. However, iterating designs of an on-skin interface from schematics to physical circuit wiring can be time-consuming, even with tiny modifications; it is also challenging to preserve skin wearability after repeated alteration. We present SkinLink, a reconfigurable on-skin fabrication approach that allows users to intuitively explore and experiment with the circuitry adjustment on the body. We demonstrate SkinLink with a customized on-skin prototyping toolkit comprising tiny distributed circuit modules and a variety of streamlined trace modules that adapt to diverse body surfaces. To evaluate SkinLink's performance, we conducted a 14-participant usability study to compare and contrast the workflows with a benchmark on-skin construction toolkit. Four case studies targeting a film makeup artist, two beauty makeup artists, and a wearable computing designer further demonstrate different application scenarios and usages. 
    more » « less
  2. null (Ed.)
    Makerspaces can support educational experiences in prototyping for children. Storytelling platforms enable high levels of creativity and expression, but have high barriers of entry. We introduce StoryMakAR, which combines making and storytelling. StoryMakAR is a new AR-IoT system for children that uses block programming, physical prototyping, and event-based storytelling to bring stories to life. We reduce the barriers to entry for youth (Age=14-18) by designing an accessible, plug-and-play system through merging both electro-mechanical devices and virtual characters to create stories. We describe our initial design process, the evolution and workflow of StoryMakAR, and results from multiple single-session workshops with 33 high school students. Our preliminary studies led us to understand what students want to make. We provide evidence of how students both engage and have difficulties with maker-based storytelling. We also discuss the potential for StoryMakAR to be used as a learning environment for classrooms and younger students. 
    more » « less
  3. While much research focused on making emphasizes digital and tangible media, few studies have explored making with biology, or biomaking, where people use cells as fabrication units to grow or “make” desired materials for designing real world applications. This lack is especially glaring considering how biomaking and related industries are often aligned with a growing push toward sustainable production as a way of addressing the pressing environmental issues of the day. In order address how maker frameworks could be used as a productive way of bringing biomaking into K-12 contexts, we report on the design and implementation of a biomaking workshop where teams of high school students both assembled a physical biosensor and imagined applications for this technology to address real world issues. Using classroom observations, analysis of classroom projects, and focus group interviews, we examined student experiences and perceptions of these activities in order to ask: What the affordances and challenges of biomaking in supporting maker learning, especially with regard to the less common practices of assembly and imagining? In the discussion, we review what we learned about facilitating biomaking in K-12 setting, as well how our analysis led us to a revaluation of the often crucial but neglected role assembly plays in more ‘typical’ maker activities, and the possibilities for enriching maker activities by including design prototyping and imagination. 
    more » « less
  4. Prototyping in design provides ways to navigate ambiguity in the design problem, gain insight through the refinement of ideas, and aid in communication between team members. However, while designing, students often underutilize prototyping and do not consider it as an integral part of the design process. To facilitate the scaffolding of design activities, it is necessary first to understand students’ conceptions of prototyping. In this study, we use artifact elicitation interviews as a method to elicit students’ conceptions by moving from the specifics of the artifacts they brought with them to the interview, to their general understanding of prototyping. Participants in the study are students in an undergraduate sophomore design oriented, project-based learning course in a large southwestern university. Students were invited to participate in a screening survey. After potential participants suitable for the purpose of this study were identified, some were selected for a follow-up interview. The findings of the study describe students’ conceptions of “what counts” as a prototype; what is valued in a prototype; the benefits of, and challenges associated with prototyping; and differences between in-class and out-of-class prototyping activities. The findings of this study improve our understanding to effectively scaffold prototyping activities in design and experiential learning. 
    more » « less
  5. In this paper, we present the development of a "reconstruction kit" for e-textiles, which transforms fixed-state construction kits---maker tools and technologies that focus on the creation of semi-permanent projects---into flex-state construction kits that allow for endless deconstruction and reconstruction. The kit uses modular pieces that allow students to both solve and create troubleshooting and debugging challenges, which we call "DebugIts." We tested our prototype in an after-school workshop with ten high school students, and report on how they interacted with the kit, as well as what they learned through the DebugIt activities. In the discussion, we delve into the affordances and challenges of using these kits as both learning and assessment tools. We also discuss how our pilot and prototype can inform the design of reconstruction kits in other areas of making. 
    more » « less