Emerging electrochromic (EC) materials have advanced the frontier of thin-film, low-power, and non-emissive display technologies. While suitable for wearable or textile-based applications, current EC display systems are manufactured in fixed, pre-designed patterns that hinder the potential of reconfigurable display technologies desired by on-skin interactions. To realize the customizable and scalable EC display for skin wear, this paper introduces ECSkin, a construction toolkit composed of modular EC films. Our approach enables reconfigurable designs that display customized patterns by arranging combinations of premade EC modules. An ECSkin device can pixelate patterns and expand the display area through tessellating congruent modules. We present the fabrication of flexible EC display modules with accessible materials and tools. We performed technical evaluations to characterize the electrochromic performance and conducted user evaluations to verify the toolkit's usability and feasibility. Two example applications demonstrate the adaptiveness of the modular display on different body locations and user scenarios.
more »
« less
SkinLink: On-body Construction and Prototyping of Reconfigurable Epidermal Interfaces
Applying customized epidermal electronics closely onto the human skin offers the potential for biometric sensing and unique, always-available on-skin interactions. However, iterating designs of an on-skin interface from schematics to physical circuit wiring can be time-consuming, even with tiny modifications; it is also challenging to preserve skin wearability after repeated alteration. We present SkinLink, a reconfigurable on-skin fabrication approach that allows users to intuitively explore and experiment with the circuitry adjustment on the body. We demonstrate SkinLink with a customized on-skin prototyping toolkit comprising tiny distributed circuit modules and a variety of streamlined trace modules that adapt to diverse body surfaces. To evaluate SkinLink's performance, we conducted a 14-participant usability study to compare and contrast the workflows with a benchmark on-skin construction toolkit. Four case studies targeting a film makeup artist, two beauty makeup artists, and a wearable computing designer further demonstrate different application scenarios and usages.
more »
« less
- Award ID(s):
- 2047249
- PAR ID:
- 10427038
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 27
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The emergence of on-skin interfaces has created an opportunity for seamless, always-available on-body interactions. However, developing a new fabrication process for on-skin interfaces can be time-consuming, challenging to incorporate new features, and not available for quick form-factor preview through prototyping. We introduce SkinKit, the first construction toolkit for on-skin interfaces, which enables fast, low-fidelity prototyping with a slim form factor directly applicable to the skin. SkinKit comprises modules consisting of skin-conformable base substrates and reusable Flexible Printed Circuits Board (FPCB) blocks. They are easy to attach and remove under tangible plug-and-play construction but still offer robust conductive connections in a slim form. Further, SkinKit aims to lower the barrier to entry in building on-skin interfaces without demanding technical expertise. It leverages a variety of preprogrammed modules connected in unique sequences to achieve various function customizations. We describe our iterative design and development process of SkinKit, comparing materials, connection mechanisms, and modules reflecting on its capability. We report results from single- and multi- session workshops with 34 maker participants spanning STEM and design backgrounds. Our findings reveal how diverse maker populations engage in on-skin interface design, what types of applications they choose to build, and what challenges they faced.more » « less
-
Abstract Wearable electronics play important roles in noninvasive, continuous, and personalized monitoring of multiple biosignals generated by the body. To unleash their full potential for the next‐generation human‐centered bio‐integrated electronics, wireless sensing capability is a desirable feature. However, state‐of‐the‐art wireless sensing technologies exploit rigid and bulky electronic modules for power supply, signal generation, and data transmission. This study reports a battery‐free device technology based on a “two‐part” resonance circuit model with modularized, physically separated, and detachable functional units for magnetic coupling and biosensing. The resulting platform combines advantages of electronics and microfluidics with low cost, minimized form factors, and improved performance stability. Demonstration of a detachable sweat patch capable of simultaneous recording of cortisol concentration, pH value, and temperature highlights the potential of the “two‐part” circuit for advanced, transformative biosensing. The resulting wireless sensors provide a new engineering solution to monitoring biosignals through intimate and seamless integration with skin surfaces.more » « less
-
Total-body photography (TBP) has the potential to revolutionize early detection of skin cancers by monitoring minute changes in lesions over time. However, there is no standardized Digital Imaging and Communications in Medicine (DICOM) format for TBP. In order to accommodate various TBP data types and sophisticated data preprocessing pipelines, we propose three TBP Extended Information Object Definitions (IODs) for 2D regional images, dermoscopy images, and 3D surface meshes. We introduce a comprehensive pipeline integrating advanced image processing techniques, including 3D DICOM representation, super-resolution enhancement, and style transfer for dermoscopic-like visualization. Our framework tracks individual lesions across multiple TBP scans from different imaging systems and provides cloud-based storage with a customized DICOM viewer. To demonstrate the effectiveness of our approach, we validate our framework using TBP datasets from multiple imaging systems. Our framework and proposed IODs enhance TBP interoperability and clinical utility in dermatological practice, potentially improving early skin cancer detection.more » « less
-
Biological skin has numerous functions like protection, sensing, expression, and regulation. On the contrary, a robot’s skin is usually regarded as a passive and static separation between the body and environment. In this article, we explore the design opportunities of a robot’s skin as a socially expressive medium. Inspired by living organisms, we discuss the roles of interactive robotic skin from four perspectives: expression, perception, regulation, and mechanical action. We focus on the expressive function of skin to sketch design concepts and present a flexible technical method for embodiment. The proposed method integrates pneumatically actuated dynamic textures on soft skin, with forms and kinematic patterns generating a variety of visual and haptic expressions. We demonstrate the proposed design space with six texture-changing skin prototypes and discuss their expressive capacities.more » « less
An official website of the United States government

