skip to main content

This content will become publicly available on April 26, 2023

Title: Microbial Diversity and Sulfur Cycling in an Early Earth Analogue: From Ancient Novelty to Modern Commonality
ABSTRACT Life emerged and diversified in the absence of molecular oxygen. The prevailing anoxia and unique sulfur chemistry in the Paleo-, Meso-, and Neoarchean and early Proterozoic eras may have supported microbial communities that differ from those currently thriving on the earth’s surface. Zodletone spring in southwestern Oklahoma represents a unique habitat where spatial sampling could substitute for geological eras namely, from the anoxic, surficial light-exposed sediments simulating a preoxygenated earth to overlaid water column where air exposure simulates oxygen intrusion during the Neoproterozoic era. We document a remarkably diverse microbial community in the anoxic spring sediments, with 340/516 (65.89%) of genomes recovered in a metagenomic survey belonging to 200 bacterial and archaeal families that were either previously undescribed or that exhibit an extremely rare distribution on the current earth. Such diversity is underpinned by the widespread occurrence of sulfite, thiosulfate, tetrathionate, and sulfur reduction and the paucity of sulfate reduction machineries in these taxa. Hence, these processes greatly expand lineages mediating reductive sulfur-cycling processes in the tree of life. An analysis of the overlaying oxygenated water community demonstrated the development of a significantly less diverse community dominated by well-characterized lineages and a prevalence of oxidative sulfur-cycling processes. Such a more » transition from ancient novelty to modern commonality underscores the profound impact of the great oxygenation event on the earth’s surficial anoxic community. It also suggests that novel and rare lineages encountered in current anaerobic habitats could represent taxa that once thrived in an anoxic earth but have failed to adapt to earth’s progressive oxygenation. IMPORTANCE Life on earth evolved in an anoxic setting; however, the identity and fate of microorganisms that thrived in a preoxygenated earth are poorly understood. In Zodletone spring, the prevailing geochemical conditions are remarkably similar to conditions prevailing in surficial earth prior to oxygen buildup in the atmosphere. We identify hundreds of previously unknown microbial lineages in the spring and demonstrate that these lineages possess the metabolic machinery to mediate a wide range of reductive sulfur processes, with the capacity to respire sulfite, thiosulfate, sulfur, and tetrathionate, rather than sulfate, which is a reflection of the differences in sulfur-cycling chemistry in ancient versus modern times. Collectively, such patterns strongly suggest that microbial diversity and sulfur-cycling processes in a preoxygenated earth were drastically different from the currently observed patterns and that the Great Oxygenation Event has precipitated the near extinction of a wide range of oxygen-sensitive lineages and significantly altered the microbial reductive sulfur-cycling community on earth. « less
Authors:
; ; ; ; ;
Editors:
Sousa, Filipa L.; Schleper, Christa M.
Award ID(s):
2016371 2016423
Publication Date:
NSF-PAR ID:
10335496
Journal Name:
mBio
Volume:
13
Issue:
2
ISSN:
2150-7511
Sponsoring Org:
National Science Foundation
More Like this
  1. Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in sourcemore »sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

    « less
  2. Abstract

    The origin(s) of dissimilatory sulfate and/or (bi)sulfite reducing organisms (SRO) remains enigmatic despite their importance in global carbon and sulfur cycling since at least 3.4 Ga. Here, we describe novel, deep-branching archaeal SRO populations distantly related to other Diaforarchaea from two moderately acidic thermal springs. Dissimilatory (bi)sulfite reductase homologs, DsrABC, encoded in metagenome assembled genomes (MAGs) from spring sediments comprise one of the earliest evolving Dsr lineages. DsrA homologs were expressed in situ under moderately acidic conditions. MAGs lacked genes encoding proteins that activate sulfate prior to (bi)sulfite reduction. This is consistent with sulfide production in enrichment cultures provided sulfite but not sulfate. We suggest input of volcanic sulfur dioxide to anoxic spring-water yields (bi)sulfite and moderately acidic conditions that favor its stability and bioavailability. The presence of similar volcanic springs at the time SRO are thought to have originated (>3.4 Ga) may have supplied (bi)sulfite that supported ancestral SRO. These observations coincide with the lack of inferred SO42−reduction capacity in nearly all organisms with early-branching DsrAB and which are near universally found in hydrothermal environments.

  3. The surficial hydrothermal sediments of Guaymas Basin harbor complex microbial communities where oxidative and reductive nitrogen, sulfur, and carbon-cycling populations and processes overlap and coexist. Here, we resolve microbial community profiles in hydrothermal sediment cores of Guaymas Basin on a scale of 2 millimeters, using Denaturing Gradient Gel Electrophoresis (DGGE) to visualize the rapid downcore changes among dominant bacteria and archaea. DGGE analysis of bacterial 16S rRNA gene amplicons identified free-living and syntrophic deltaproteobacterial sulfate-reducing bacteria, fermentative Cytophagales, members of the Chloroflexi (Thermoflexia), Aminicenantes, and uncultured sediment clades. The DGGE pattern indicates a gradually changing downcore community structure where small changes on a 2-millimeter scale accumulate to significantly changing populations within the top 4 cm sediment layer. Functional gene DGGE analyses identified anaerobic methane-oxidizing archaea (ANME) based on methyl-coenzyme M reductase genes, and members of the Betaproteobacteria and Thaumarchaeota based on bacterial and archaeal ammonia monooxygenase genes, respectively. The co-existence and overlapping habitat range of aerobic, nitrifying, sulfate-reducing and fermentative bacteria and archaea, including thermophiles, in the surficial sediments is consistent with dynamic redox and thermal gradients that sustain highly complex microbial communities in the hydrothermal sediments of Guaymas Basin.
  4. Nikel, Pablo Ivan (Ed.)
    ABSTRACT Cultured Myxococcota are predominantly aerobic soil inhabitants, characterized by their highly coordinated predation and cellular differentiation capacities. Little is currently known regarding yet-uncultured Myxococcota from anaerobic, nonsoil habitats. We analyzed genomes representing one novel order (o__JAFGXQ01) and one novel family (f__JAFGIB01) in the Myxococcota from an anoxic freshwater spring (Zodletone Spring) in Oklahoma, USA. Compared to their soil counterparts, anaerobic Myxococcota possess smaller genomes and a smaller number of genes encoding biosynthetic gene clusters (BGCs), peptidases, one- and two-component signal transduction systems, and transcriptional regulators. Detailed analysis of 13 distinct pathways/processes crucial to predation and cellular differentiation revealed severely curtailed machineries, with the notable absence of homologs for key transcription factors (e.g., FruA and MrpC), outer membrane exchange receptor (TraA), and the majority of sporulation-specific and A-motility-specific genes. Further, machine learning approaches based on a set of 634 genes informative of social lifestyle predicted a nonsocial behavior for Zodletone Myxococcota . Metabolically, Zodletone Myxococcota genomes lacked aerobic respiratory capacities but carried genes suggestive of fermentation, dissimilatory nitrite reduction, and dissimilatory sulfate-reduction (in f_JAFGIB01) for energy acquisition. We propose that predation and cellular differentiation represent a niche adaptation strategy that evolved circa 500 million years ago (Mya) in response tomore »the rise of soil as a distinct habitat on Earth. IMPORTANCE The phylum Myxococcota is a phylogenetically coherent bacterial lineage that exhibits unique social traits. Cultured Myxococcota are predominantly aerobic soil-dwelling microorganisms that are capable of predation and fruiting body formation. However, multiple yet-uncultured lineages within the Myxococcota have been encountered in a wide range of nonsoil, predominantly anaerobic habitats, and the metabolic capabilities, physiological preferences, and capacity of social behavior of such lineages remain unclear. Here, we analyzed genomes recovered from a metagenomic analysis of an anoxic freshwater spring in Oklahoma, USA, that represent novel, yet-uncultured, orders and families in the Myxococcota . The genomes appear to lack the characteristic hallmarks for social behavior encountered in Myxococcota genomes and displayed a significantly smaller genome size and a smaller number of genes encoding biosynthetic gene clusters, peptidases, signal transduction systems, and transcriptional regulators. Such perceived lack of social capacity was confirmed through detailed comparative genomic analysis of 13 pathways associated with Myxococcota social behavior, as well as the implementation of machine learning approaches to predict social behavior based on genome composition. Metabolically, these novel Myxococcota are predicted to be strict anaerobes, utilizing fermentation, nitrate reduction, and dissimilarity sulfate reduction for energy acquisition. Our results highlight the broad patterns of metabolic diversity within the yet-uncultured Myxococcota and suggest that the evolution of predation and fruiting body formation in the Myxococcota has occurred in response to soil formation as a distinct habitat on Earth.« less
  5. Deep subsurface environments are decoupled from Earth’s surface processes yet diverse, active, and abundant microbial communities thrive in these isolated environments. Microbes inhabiting the deep biosphere face unique challenges such as electron donor/acceptor limitations, pore space/fracture network limitations, and isolation from other microbes within the formation. Of the few systems that have been characterized, it is apparent that nutrient limitations likely facilitate diverse microbe-microbe interactions (i.e., syntrophic, symbiotic, or parasitic) and that these interactions drive biogeochemical cycling of major elements. Here we describe microbial communities living in low temperature, chemically reduced brines at the Soudan Underground Mine State Park, United States. The Soudan Iron mine intersects a massive hematite formation at the southern extent of the Canadian Shield. Fractured rock aquifer brines continuously flow from exploratory boreholes drilled circa 1960 and are enriched in deuterium compared to the global meteoric values, indicating brines have had little contact with surface derived waters, and continually degas low molecular weight hydrocarbons C 1 -C 4 . Microbial enrichments suggest that once brines exit the boreholes, oxidation of the hydrocarbons occur. Amplicon sequencing show these borehole communities are low in diversity and dominated by Firmicute and Proteobacteria phyla. From the metagenome assemblies, we recoveredmore »approximately thirty genomes with estimated completion over 50%. Analysis of genome taxonomy generally followed the amplicon data, and highlights that several of the genomes represent novel families and genera. Metabolic reconstruction shows two carbon-fixation pathways were dominant, the Wood-Ljungdahl (acetogenesis) and Calvin-Benson-Bassham (via RuBisCo), indicating that inorganic carbon likely enters into the microbial foodweb with differing carbon fractionation potentials. Interestingly, methanogenesis is likely driven by Methanolobus and suggests cycling of methylated compounds and not H 2 /CO 2 or acetate. Furthermore, the abundance of sulfate in brines suggests cryptic sulfur cycling may occur, as we detect possible sulfate reducing and thiosulfate oxidizing microorganisms. Finally, a majority of the microorganisms identified contain genes that would allow them to participate in several element cycles, highlighting that in these deep isolated systems metabolic flexibility may be an important life history trait.« less