skip to main content


Title: Direct STM measurements of R-type and H-type twisted MoSe 2 /WSe 2
When semiconducting transition metal dichalcogenide heterostructures are stacked, the twist angle and lattice mismatch lead to a periodic moiré potential. As the angle between the layers changes, so do the electronic properties. As the angle approaches 0° or 60°, interesting characteristics and properties, such as modulations in the band edges, flat bands, and confinement, are predicted to occur. Here, we report scanning tunneling microscopy and spectroscopy measurements on the bandgaps and band modulations in MoSe 2 /WSe 2 heterostructures with near 0° rotation (R-type) and near 60° rotation (H-type). We find a modulation of the bandgap for both stacking configurations with a larger modulation for R-type than for H-type as predicted by theory. Furthermore, local density of states images show that electrons are localized differently at the valence band and conduction band edges.  more » « less
Award ID(s):
2003583
PAR ID:
10335511
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
APL Materials
Volume:
10
Issue:
3
ISSN:
2166-532X
Page Range / eLocation ID:
031107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We fabricated a van der Waals heterostructure of WS 2 –ReSe 2 and studied its charge-transfer properties. Monolayers of WS 2 and ReSe 2 were obtained by mechanical exfoliation and chemical vapor deposition, respectively. The heterostructure sample was fabricated by transferring the WS 2 monolayer on top of ReSe 2 by a dry transfer process. Photoluminescence quenching was observed in the heterostructure, indicating efficient interlayer charge transfer. Transient absorption measurements show that holes can efficiently transfer from WS 2 to ReSe 2 on an ultrafast timescale. Meanwhile, electron transfer from ReSe 2 to WS 2 was also observed. The charge-transfer properties show that monolayers of ReSe 2 and WS 2 form a type-II band alignment, instead of type-I as predicted by theory. The type-II alignment is further confirmed by the observation of extended photocarrier lifetimes in the heterostructure. These results provide useful information for developing van der Waals heterostructure involving ReSe 2 for novel electronic and optoelectronic applications and introduce ReSe 2 to the family of two-dimensional materials to construct van der Waals heterostructures. 
    more » « less
  2. We observed seven epochs of spectropolarimetry in optical wavelengths for the Type IIb SN 2011hs, ranging from 􀀀3 to +40 days with respect to V -band maximum. A high degree of interstellar polarization was detected (up to 3 percent), with a peak lying blueward of 4500A. Similar behaviours have been seen in some Type Ia SNe, but had never been observed in a Type IIb. We nd that it is most likely the result of a relative enhancement of small silicate grains in the vicinity of the SN. Signi cant intrinsic continuum polarization was recovered at 􀀀3 and +2 days (p = 0.55  0.12 percent and p = 0.75  0.11 percent, respectively). We discuss the change of the polarization angle across spectral lines and in the continuum as diagnostics for the 3D structure of the ejecta. We see a gradual rotation by about 􀀀50 in the continuum polarization angle between 􀀀2 and +18 days after V -band maximum. A similar rotation in He i 5876, H and the Ca ii infrared triplet seems to indicate a strong in uence of the global geometry on the line polarization features. The di erences in the evolution of their respective loops on the Stokes q 􀀀 u plane suggest that line speci c geometries are also being probed. Possible interpretations are discussed and placed in the context of literature. We nd that the spectropolarimetry of SN 2011hs is most similar to that of SN 2011dh, albeit with notable di erences. 
    more » « less
  3. Abstract

    Rare-earth monopnictides are a family of materials simultaneously displaying complex magnetism, strong electronic correlation, and topological band structure. The recently discovered emergent arc-like surface states in these materials have been attributed to the multi-wave-vector antiferromagnetic order, yet the direct experimental evidence has been elusive. Here we report observation of non-collinear antiferromagnetic order with multiple modulations using spin-polarized scanning tunneling microscopy. Moreover, we discover a hidden spin-rotation transition of single-to-multiple modulations 2 K below the Néel temperature. The hidden transition coincides with the onset of the surface states splitting observed by our angle-resolved photoemission spectroscopy measurements. Single modulation gives rise to a band inversion with induced topological surface states in a local momentum region while the full Brillouin zone carries trivial topological indices, and multiple modulation further splits the surface bands via non-collinear spin tilting, as revealed by our calculations. The direct evidence of the non-collinear spin order in NdSb not only clarifies the mechanism of the emergent topological surface states, but also opens up a new paradigm of control and manipulation of band topology with magnetism.

     
    more » « less
  4. Abstract

    Imogolite nanotubes (INTs) are predicted as a unique 1D material with spatial separation of conduction and valence band edges but their large band gaps have inhibited their use as photocatalysts. The first step toward using these NTs in photocatalysis and exploiting the polarization‐promoted charge separation across their walls is to reduce their band gap. Here, the modification of double‐walled aluminogermanate INTs by incorporation of titanium into the NT walls is explored. The precursor ratiox= [Ti]/([Ge]+[Ti]) is modulated between 0 and 1. Structural and optical properties are determined at different scales and the photocatalytic performance is evaluated for H2production. Although the incorporation of Ti atoms into the structure remains limited, the optimal condition is found aroundx= 0.4 for which the resulting NTs reveal a remarkable hydrogen production of ≈1500 µmol g−1after 5 h for a noble metal‐free photocatalyst, a 65‐fold increase relative to a commercial TiO2‐P25. This is correlated to a lowering of the recombination rate of photogenerated charge carriers for the most active structures. These results confirm the theoretical predictions regarding the potential of modified INTs as photoactive nanoreactors and pave the way for investigating and exploiting their polarization properties for energy applications.

     
    more » « less
  5. We present an early-phase g-band light curve and visual-wavelength spectra of the normal Type Ia supernova (SN) 2013gy. The light curve is constructed by determining the appropriate S-corrections to transform KAIT natural-system B- and V-band photometry and Carnegie Supernova Project natural-system g-band photometry to the Pan-STARRS1 g-band natural photometric system. A Markov Chain Monte Carlo calculation provides a best-fit single power-law function to the first ten epochs of photometry described by an exponent of 2:16+0:06 􀀀0:06 and a time of first light of MJD 56629.4+0:1 􀀀0:1, which is 1:93+0:12 􀀀0:13 days (i.e., < 48 hr) before the discovery date (2013 December 4.84 UT) and 􀀀19:10+0:12 􀀀0:13 days before the time of B-band maximum (MJD 56648.50:1). The estimate of the time of first light is consistent with the explosion time inferred from the evolution of the Si ii 6355 Doppler velocity. Furthermore, discovery photometry and previous nondetection limits enable us to constrain the companion radius down to Rc  4 R . In addition to our early-time constraints, we use a deep +235 day nebular-phase spectrum from Magellan/IMACS to place a stripped H-mass limit of < 0:018 M . Combined, these limits e ectively rule out H-rich nondegenerate companions. 
    more » « less