skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Parallel Evolution towards Increased Motility in Long-Term Cultures of Escherichia coli, Even Though Motility was Not Required for Long-Term Survival
ABSTRACT Escherichia coli can survive for long periods in batch culture in the laboratory, where they experience a stressful and heterogeneous environment. During this incubation, E. coli acquires mutations that are selected in response to this environment, ultimately leading to evolved populations that are better adapted to these complex conditions, which can lead to a better understanding of evolutionary mechanisms. Mutations in regulatory genes often play a role in adapting to heterogeneous environments. To identify such mutations, we examined transcriptional differences during log phase growth in unaged cells compared to those that had been aged for 10 days and regrown. We identified expression changes in genes involved in motility and chemotaxis after adaptation to long-term cultures. We hypothesized that aged populations would also have phenotypic changes in motility and that motility may play a role in survival and adaptation to long-term cultures. While aged populations did show an increase in motility, this increase was not essential for survival in long-term cultures. We identified mutations in the regulatory gene sspA and other genes that may contribute to the observed differences in motility. Taken together, these data provide an overall picture of the role of mutations in regulatory genes for adaptation while underscoring that all changes that occur during evolution in stressful environments are not necessarily adaptive. IMPORTANCE Understanding how bacteria adapt in long-term cultures aids in both better treatment options for bacterial infections and gives insight into the mechanisms involved in bacterial evolution. In the past, it has been difficult to study these organisms in their natural environments. By using experimental evolution in heterogeneous and stressful laboratory conditions, we can more closely mimic natural environments and examine evolutionary mechanisms. One way to observe these mechanisms is to look at transcriptomic and genomic data from cells adapted to these complex conditions. Here, we found that although aged cells increase motility, this increase is not essential for survival in these conditions. These data emphasize that not all changes that occur due to evolutionary processes are adaptive, but these observations could still lead to hypotheses about the causative mutations. The information gained here allow us to make inferences about general mechanisms underlying phenotypic changes due to evolution.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Gao, Beile
Date Published:
Journal Name:
Microbiology Spectrum
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lin, Xiaoxia (Ed.)
    ABSTRACT Microbes live in complex and constantly changing environments, but it is difficult to replicate this in the laboratory. Escherichia coli has been used as a model organism in experimental evolution studies for years; specifically, we and others have used it to study evolution in complex environments by incubating the cells into long-term stationary phase (LTSP) in rich media. In LTSP, cells experience a variety of stresses and changing conditions. While we have hypothesized that this experimental system is more similar to natural environments than some other lab conditions, we do not yet know how cells respond to this environment biochemically or physiologically. In this study, we began to unravel the cells’ responses to this environment by characterizing the transcriptome of cells during LTSP. We found that cells in LTSP have a unique transcriptional program and that several genes are uniquely upregulated or downregulated in this phase. Further, we identified two genes, cspB and cspI , which are most highly expressed in LTSP, even though these genes are primarily known to respond to cold shock. By competing cells lacking these genes with wild-type cells, we show that these genes are also important for survival during LTSP. These data can help identify gene products that may play a role in survival in this complex environment and lead to identification of novel functions of proteins. IMPORTANCE Experimental evolution studies have elucidated evolutionary processes, but usually in chemically well-defined and/or constant environments. Using complex environments is important to begin to understand how evolution may occur in natural environments, such as soils or within a host. However, characterizing the stresses that cells experience in these complex environments can be challenging. One way to approach this is by determining how cells biochemically acclimate to heterogenous environments. In this study, we began to characterize physiological changes by analyzing the transcriptome of cells in a dynamic complex environment. By characterizing the transcriptional profile of cells in long-term stationary phase, a heterogenous and stressful environment, we can begin to understand how cells physiologically and biochemically react to the laboratory environment, and how this compares to more-natural conditions. 
    more » « less
  2. null (Ed.)
    Laboratory experimental evolution provides a window into the details of the evolutionary process. To investigate the consequences of long-term adaptation, we evolved 205 Saccharomyces cerevisiae populations (124 haploid and 81 diploid) for ~10,000 generations in three environments. We measured the dynamics of fitness changes over time, finding repeatable patterns of declining adaptability. Sequencing revealed that this phenotypic adaptation is coupled with a steady accumulation of mutations, widespread genetic parallelism, and historical contingency. In contrast to long-term evolution in E. coli , we do not observe long-term coexistence or populations with highly elevated mutation rates. We find that evolution in diploid populations involves both fixation of heterozygous mutations and frequent loss-of-heterozygosity events. Together, these results help distinguish aspects of evolutionary dynamics that are likely to be general features of adaptation across many systems from those that are specific to individual organisms and environmental conditions. 
    more » « less
  3. Villanueva, Laura (Ed.)
    ABSTRACT Experimental evolution provides a powerful tool for examining how Bdellovibrio evolves in response to unique selective pressures associated with its predatory lifestyle. We tested how Bdellovibrio sp. NC01 adapts to long-term coculture with Pseudomonas sp. NC02, which is less susceptible to predation compared to other Gram-negative bacteria. Analyzing six replicate Bdellovibrio populations across six time points spanning 40 passages and 2,880 h of coculture, we detected 30 to 40 new mutations in each population that exceeded a frequency of 5%. Nonsynonymous substitutions were the most abundant type of new mutation, followed by small indels and synonymous substitutions. After completing the final passage, we detected 20 high-frequency (>75%) mutations across all six evolved Bdellovibrio populations. Eighteen of these alter protein sequences, and most increased in frequency rapidly. Four genes acquired a high-frequency mutation in two or more evolved Bdellovibrio populations, reflecting parallel evolution and positive selection. The genes encode a sodium/phosphate cotransporter family protein (Bd2221), a metallophosphoesterase (Bd0054), a TonB family protein (Bd0396), and a hypothetical protein (Bd1601). Tested prey range and predation efficiency phenotypes did not differ significantly between evolved Bdellovibrio populations and the ancestor; however, all six evolved Bdellovibrio populations demonstrated enhanced starvation survival compared to the ancestor. These results suggest that, instead of evolving improved killing of Pseudomonas sp. NC02, Bdellovibrio evolved to better withstand nutrient limitation in the presence of this prey strain. The mutations identified here point to genes and functions that may be important for Bdellovibrio adaptation to the different selective pressures of long-term coculture with Pseudomonas . IMPORTANCE Bdellovibrio attack and kill Gram-negative bacteria, including drug-resistant pathogens of animals and plants. This lifestyle is unusual among bacteria, and it imposes unique selective pressures on Bdellovibrio . Determining how Bdellovibrio evolve in response to these pressures is valuable for understanding the mechanisms that govern predation. We applied experimental evolution to test how Bdellovibrio sp. NC01 evolved in response to long-term coculture with a single Pseudomonas strain, which NC01 can kill, but with low efficiency. Our experimental design imposed different selective pressures on the predatory bacteria and tracked the evolutionary trajectories of replicate Bdellovibrio populations. Using genome sequencing, we identified Bdellovibrio genes that acquired high-frequency mutations in two or more populations. Using phenotype assays, we determined that evolved Bdellovibrio populations did not improve their ability to kill Pseudomonas , but rather are better able to survive starvation. Overall, our results point to functions that may be important for Bdellovibrio adaptation. 
    more » « less
  4. Organisms can adapt to an environment by taking multiple mutational paths. This redundancy at the genetic level, where many mutations have similar phenotypic and fitness effects, can make untangling the molecular mechanisms of complex adaptations difficult. Here we use the E. coli long-term evolution experiment (LTEE) as a model to address this challenge. To understand how different genomic changes could lead to parallel fitness gains, we characterize the landscape of transcriptional and translational changes across 12 replicate populations evolving in parallel for 50,000 generations. By quantifying absolute changes in mRNA abundances, we show that not only do all evolved lines have more mRNAs but that this increase in mRNA abundance scales with cell size. We also find that despite few shared mutations at the genetic level, clones from replicate populations in the LTEE are remarkably similar in their gene expression patterns at both the transcriptional and translational levels. Furthermore, we show that the majority of the expression changes are due to changes at the transcriptional level with very few translational changes. Finally, we show how mutations in transcriptional regulators lead to consistent and parallel changes in the expression levels of downstream genes. These results deepen our understanding of the molecular mechanisms underlying complex adaptations and provide insights into the repeatability of evolution. 
    more » « less
  5. null (Ed.)
    Abstract Insertion sequences (IS) are ubiquitous bacterial mobile genetic elements, and the mutations they cause can be deleterious, neutral, or beneficial. The long-term dynamics of IS elements and their effects on bacteria are poorly understood, including whether they are primarily genomic parasites or important drivers of adaptation by natural selection. Here, we investigate the dynamics of IS elements and their contribution to genomic evolution and fitness during a long-term experiment with Escherichia coli . IS elements account for ~35% of the mutations that reached high frequency through 50,000 generations in those populations that retained the ancestral point-mutation rate. In mutator populations, IS-mediated mutations are only half as frequent in absolute numbers. In one population, an exceptionally high ~8-fold increase in IS 150 copy number is associated with the beneficial effects of early insertion mutations; however, this expansion later slowed down owing to reduced IS 150 activity. This population also achieves the lowest fitness, suggesting that some avenues for further adaptation are precluded by the IS 150 -mediated mutations. More generally, across all populations, we find that higher IS activity becomes detrimental to adaptation over evolutionary time. Therefore, IS-mediated mutations can both promote and constrain evolvability. 
    more » « less