In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in DP, we randomize both input and latent spaces to strengthen our certified robustness bounds. To address the trade-off among model utility, privacy loss, and robustness, we design an original adversarial objective function, based on the post-processing property in DP, to tighten the sensitivity of our model. A new stochastic batch training is proposed to apply our mechanism on large DNNs and datasets, by bypassing the vanilla iterative batch-by-batch training in DP DNNs. An end-to-end theoretical analysis and evaluations show that our mechanism notably improves the robustness and scalability of DP DNNs.
more »
« less
An Integrated Approach to Produce Robust Deep Neural Network Models with High Efficiency
Deep Neural Networks (DNNs) need to be both efficient and robust for practical uses. Quantization and structure simplification are promising ways to adapt DNNs to mobile devices, and adversarial training is one of the most successful methods to train robust DNNs. In this work, we aim to realize both advantages by applying a convergent relaxation quantization algorithm, i.e., Binary-Relax (BR), to an adversarially trained robust model, i.e. the ResNets Ensemble via Feynman-Kac Formalism (EnResNet). We discover that high-precision quantization, such as ternary (tnn) or 4-bit, produces sparse DNNs. However, this sparsity is unstructured under adversarial training. To solve the problems that adversarial training jeopardizes DNNs’ accuracy on clean images and break the structure of sparsity, we design a trade-off loss function that helps DNNs preserve natural accuracy and improve channel sparsity. With our newly designed trade-off loss function, we achieve both goals with no reduction of resistance under weak attacks and very minor reduction of resistance under strong adversarial attacks. Together with our model and algorithm selections and loss function design, we provide an integrated approach to produce robust DNNs with high efficiency and accuracy. Furthermore, we provide a missing benchmark on robustness of quantized models.
more »
« less
- PAR ID:
- 10335742
- Date Published:
- Journal Name:
- Lecture notes in computer science
- Volume:
- 13164.
- ISSN:
- 0302-9743
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in DP, we randomize both input and latent spaces to strengthen our certified robustness bounds. To address the trade-off among model utility, privacy loss, and robustness, we design an original adversarial objective function, based on the post-processing property in DP, to tighten the sensitivity of our model. A new stochastic batch training is proposed to apply our mechanism on large DNNs and datasets, by bypassing the vanilla iterative batch-by-batch training in DP DNNs. An end-to-end theoretical analysis and evaluations show that our mechanism notably improves the robustness and scalability of DP DNNs.more » « less
-
Defenses against adversarial examples, such as adversarial training, are typically tailored to a single perturbation type (e.g., small ℓ∞-noise). For other perturbations, these defenses offer no guarantees and, at times, even increase the model’s vulnerability. Our aim is to understand the reasons underlying this robustness trade-off, and to train models that are simultaneously robust to multiple perturbation types. We prove that a trade-off in robustness to different types of ℓp-bounded and spatial perturbations must exist in a natural and simple statistical setting. We corroborate our formal analysis by demonstrating similar robustness trade-offs on MNIST and CIFAR10. We propose new multi-perturbation adversarial training schemes, as well as an efficient attack for the ℓ1-norm, and use these to show that models trained against multiple attacks fail to achieve robustness competitive with that of models trained on each attack individually. In particular, we find that adversarial training with first-order ℓ∞, ℓ1 and ℓ2 attacks on MNIST achieves merely 50% robust accuracy, partly because of gradient-masking. Finally, we propose affine attacks that linearly interpolate between perturbation types and further degrade the accuracy of adversarially trained models.more » « less
-
null (Ed.)Improving the accuracy and robustness of deep neural nets (DNNs) and adapting them to small training data are primary tasks in deep learning (DL) research. In this paper, we replace the output activation function of DNNs, typically the data-agnostic softmax function, with a graph Laplacian-based high-dimensional interpolating function which, in the continuum limit, converges to the solution of a Laplace–Beltrami equation on a high-dimensional manifold. Furthermore, we propose end-to-end training and testing algorithms for this new architecture. The proposed DNN with graph interpolating activation integrates the advantages of both deep learning and manifold learning. Compared to the conventional DNNs with the softmax function as output activation, the new framework demonstrates the following major advantages: First, it is better applicable to data-efficient learning in which we train high capacity DNNs without using a large number of training data. Second, it remarkably improves both natural accuracy on the clean images and robust accuracy on the adversarial images crafted by both white-box and black-box adversarial attacks. Third, it is a natural choice for semi-supervised learning. This paper is a significant extension of our earlier work published in NeurIPS, 2018. For reproducibility, the code is available at https://github.com/BaoWangMath/DNN-DataDependentActivation .more » « less
-
Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pre-trained models are often prohibitively large for delivering generalizable representations, which limits their deployment on edge devices with constrained resources. To close this gap, we propose a new transfer learning pipeline, which leverages our finding that robust tickets can transfer better, i.e., subnetworks drawn with properly induced adversarial robustness can win better transferability over vanilla lottery ticket subnetworks. Extensive experiments and ablation studies validate that our proposed transfer learning pipeline can achieve enhanced accuracy-sparsity trade-offs across both diverse downstream tasks and sparsity patterns, further enriching the lottery ticket hypothesis.more » « less