skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Learning Robust and Privacy-Preserving Representations via Information Theory
Machine learning models are vulnerable to both security attacks (e.g., adversarial examples) and privacy attacks (e.g., private attribute inference). We take the first step to mitigate both the security and privacy attacks, and maintain task utility as well. Particularly, we propose an information-theoretic framework to achieve the goals through the lens of representation learning, i.e., learning representations that are robust to both adversarial examples and attribute inference adversaries. We also derive novel theoretical results under our framework, e.g., the inherent trade-off between adversarial robustness/utility and attribute privacy, and guaranteed attribute privacy leakage against attribute inference adversaries.  more » « less
Award ID(s):
2326341 2308730 2302689
PAR ID:
10631551
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
39
Issue:
21
ISSN:
2159-5399
Page Range / eLocation ID:
22363 to 22371
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Deploying machine learning models in production may allow adversaries to infer sensitive information about training data. There is a vast literature analyzing different types of inference risks, ranging from membership inference to reconstruction attacks. Inspired by the success of games (i.e. probabilistic experiments) to study security properties in cryptography, some authors describe privacy inference risks in machine learning using a similar game-based style. However, adversary capabilities and goals are often stated in subtly different ways from one presentation to the other, which makes it hard to relate and compose results. In this paper, we present a game-based framework to systematize the body of knowledge on privacy inference risks in machine learning. We use this framework to (1) provide a unifying structure for definitions of inference risks, (2) formally establish known relations among definitions, and (3) to uncover hitherto unknown relations that would have been difficult to spot otherwise. Index Terms—privacy, machine learning, differential privacy, membership inference, attribute inference, property inference 
    more » « less
  2. Federated learning (FL) has been widely studied recently due to its property to collaboratively train data from different devices without sharing the raw data. Nevertheless, recent studies show that an adversary can still be possible to infer private information about devices' data, e.g., sensitive attributes such as income, race, and sexual orientation. To mitigate the attribute inference attacks, various existing privacy-preserving FL methods can be adopted/adapted. However, all these existing methods have key limitations: they need to know the FL task in advance, or have intolerable computational overheads or utility losses, or do not have provable privacy guarantees. We address these issues and design a task-agnostic privacy-preserving presentation learning method for FL (TAPPFL) against attribute inference attacks. TAPPFL is formulated via information theory. Specifically, TAPPFL has two mutual information goals, where one goal learns task-agnostic data representations that contain the least information about the private attribute in each device's data, and the other goal ensures the learnt data representations include as much information as possible about the device data to maintain FL utility. We also derive privacy guarantees of TAPPFL against worst-case attribute inference attacks, as well as the inherent tradeoff between utility preservation and privacy protection. Extensive results on multiple datasets and applications validate the effectiveness of TAPPFL to protect data privacy, maintain the FL utility, and be efficient as well. Experimental results also show that TAPPFL outperforms the existing defenses. 
    more » « less
  3. Machine learning-based security detection models have become prevalent in modern malware and intrusion detection systems. However, previous studies show that such models are susceptible to adversarial evasion attacks. In this type of attack, inputs (i.e., adversarial examples) are specially crafted by intelligent malicious adversaries, with the aim of being misclassified by existing state-of-the-art models (e.g., deep neural networks). Once the attackers can fool a classifier to think that a malicious input is actually benign, they can render a machine learning-based malware or intrusion detection system ineffective. Objective To help security practitioners and researchers build a more robust model against non-adaptive, white-box and non-targeted adversarial evasion attacks through the idea of ensemble model. Method We propose an approach called Omni, the main idea of which is to explore methods that create an ensemble of “unexpected models”; i.e., models whose control hyperparameters have a large distance to the hyperparameters of an adversary’s target model, with which we then make an optimized weighted ensemble prediction. Results In studies with five types of adversarial evasion attacks (FGSM, BIM, JSMA, DeepFool and Carlini-Wagner) on five security datasets (NSL-KDD, CIC-IDS-2017, CSE-CIC-IDS2018, CICAndMal2017 and the Contagio PDF dataset), we show Omni is a promising approach as a defense strategy against adversarial attacks when compared with other baseline treatments Conclusions When employing ensemble defense against adversarial evasion attacks, we suggest to create ensemble with unexpected models that are distant from the attacker’s expected model (i.e., target model) through methods such as hyperparameter optimization. 
    more » « less
  4. Emerging Distributed AI systems are revolutionizing big data computing and data processing capabilities with growing economic and societal impact. However, recent studies have identified new attack surfaces and risks caused by security, privacy, and fairness issues in AI systems. In this paper, we review representative techniques, algorithms, and theoretical foundations for trustworthy distributed AI through robustness guarantee, privacy protection, and fairness awareness in distributed learning. We first provide a brief overview of alternative architectures for distributed learning, discuss inherent vulnerabilities for security, privacy, and fairness of AI algorithms in distributed learning, and analyze why these problems are present in distributed learning regardless of specific architectures. Then we provide a unique taxonomy of countermeasures for trustworthy distributed AI, covering (1) robustness to evasion attacks and irregular queries at inference, and robustness to poisoning attacks, Byzantine attacks, and irregular data distribution during training; (2) privacy protection during distributed learning and model inference at deployment; and (3) AI fairness and governance with respect to both data and models. We conclude with a discussion on open challenges and future research directions toward trustworthy distributed AI, such as the need for trustworthy AI policy guidelines, the AI responsibility-utility co-design, and incentives and compliance. 
    more » « less
  5. Internet of Things (IoT) devices have been increasingly deployed in smart homes to automatically monitor and control their environments. Unfortunately, extensive recent research has shown that on-path external adversaries can infer and further fingerprint people’s sensitive private information by analyzing IoT network traffic traces. In addition, most recent approaches that aim to defend against these malicious IoT traffic analytics cannot adequately protect user privacy with reasonable traffic overhead. In particular, these approaches often did not consider practical traffic reshaping limitations, user daily routine permitting, and user privacy protection preference in their design. To address these issues, we design a new low-cost, open source user-centric defense system—PrivacyGuard—that enables people to regain the privacy leakage control of their IoT devices while still permitting sophisticated IoT data analytics that is necessary for smart home automation. In essence, our approach employs intelligent deep convolutional generative adversarial network assisted IoT device traffic signature learning, long short-term memory based artificial traffic signature injection, and partial traffic reshaping to obfuscate private information that can be observed in IoT device traffic traces. We evaluate PrivacyGuard using IoT network traffic traces of 31 IoT devices from five smart homes and buildings. We find that PrivacyGuard can effectively prevent a wide range of state-of-the-art adversarial machine learning and deep learning based user in-home activity inference and fingerprinting attacks and help users achieve the balance between their IoT data utility and privacy preserving. 
    more » « less