Abstract Near‐term freshwater forecasts, defined as sub‐daily to decadal future predictions of a freshwater variable with quantified uncertainty, are urgently needed to improve water quality management as freshwater ecosystems exhibit greater variability due to global change. Shifting baselines in freshwater ecosystems due to land use and climate change prevent managers from relying on historical averages for predicting future conditions, necessitating near‐term forecasts to mitigate freshwater risks to human health and safety (e.g., flash floods, harmful algal blooms) and ecosystem services (e.g., water‐related recreation and tourism). To assess the current state of freshwater forecasting and identify opportunities for future progress, we synthesized freshwater forecasting papers published in the past 5 years. We found that freshwater forecasting is currently dominated by near‐term forecasts of waterquantityand that near‐term waterqualityforecasts are fewer in number and in the early stages of development (i.e., non‐operational) despite their potential as important preemptive decision support tools. We contend that more freshwater quality forecasts are critically needed and that near‐term water quality forecasting is poised to make substantial advances based on examples of recent progress in forecasting methodology, workflows, and end‐user engagement. For example, current water quality forecasting systems can predict water temperature, dissolved oxygen, and algal bloom/toxin events 5 days ahead with reasonable accuracy. Continued progress in freshwater quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater quantity forecasting (e.g., machine learning modeling methods). In addition, future development of effective operational freshwater quality forecasts will require substantive engagement of end users throughout the forecast process, funding, and training opportunities. Looking ahead, near‐term forecasting provides a hopeful future for freshwater management in the face of increased variability and risk due to global change, and we encourage the freshwater scientific community to incorporate forecasting approaches in water quality research and management.
more »
« less
Reversing Freshwater Salinization: A Holistic Approach
Inland freshwater salinity is rising globally, a trend that threatens water and food supplies, civil infrastructure, and freshwater ecosystems.
more »
« less
- Award ID(s):
- 2020820
- PAR ID:
- 10335788
- Date Published:
- Journal Name:
- Advances in water research
- Volume:
- 31
- Issue:
- 3
- ISSN:
- 2330-6947
- Page Range / eLocation ID:
- 24-29
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Coastal ecosystems are exposed to saltwater intrusion but differential effects on biogeochemical cycling are uncertain. We tested how elevated salinity and phosphorus (P) individually and interactively affect microbial activities and biogeochemical cycling in freshwater and brackish wetland soils. In experimental mesocosms, we added crossed gradients of elevated concentrations of soluble reactive P (SRP) (0, 20, 40, 60, 80 μg/L) and salinity (0, 4, 7, 12, 16 ppt) to freshwater and brackish peat soils (10, 14, 17, 22, 26 ppt) for 35 d. We quantified changes in water chemistry [dissolved organic carbon (DOC), ammonium (), nitrate + nitrite (N + N), SRP concentrations], soil microbial extracellular enzyme activities, respiration rates, microbial biomass C, and soil chemistry (%C, %N, %P, C:N, C:P, N:P). DOC, , and SRP increased in freshwater but decreased in brackish mesocosms with elevated salinity. DOC similarly decreased in brackish mesocosms with added P, and N + N decreased with elevated salinity in both freshwater and brackish mesocosms. In freshwater soils, water column P uptake occurred only in the absence of elevated salinity and when P was above 40 µg/L. Freshwater microbial EEAs, respiration rates, and microbial biomass C were consistently higher compared to those from brackish soils, and soil phosphatase activities and microbial respiration rates in freshwater soils decreased with elevated salinity. Elevated salinity increased arylsulfatase activities and microbial biomass C in brackish soils, and elevated P increased microbial respiration rates in brackish soils. Freshwater soil %C, %N, %P decreased and C:P and N:P increased with elevated salinity. Elevated P increased %C and C:N in freshwater soils and increased %P but decreased C:P and N:P in brackish soils. Freshwater soils released more C and nutrients than brackish soils when exposed to elevated salinity, and both soils were less responsive to elevated P than expected. Freshwater soils became more nutrient‐depleted with elevated salinity, whereas brackish soils were unaffected by salinity but increased P uptake. Microbial activities in freshwater soils were inhibited by elevated salinity and unaffected by added P, but brackish soil microbial activities slightly increased with elevated salinity and P.more » « less
-
Biscayne Bay is a coastal estuary that historically relied on rainfall and groundwater inputs from the karst Biscayne aquifer. The construction of major canals along the coastline has released point-source freshwater inputs into the bay, detrimentally affecting the Bay’s ecosystem balance. This project investigates the proportional inputs of freshwater between the wet and dry seasons in Deering Estate, adjacent to Biscayne Bay. The objective of this project was accomplished by analyzing the water chemistry of the bay using naturally occurring geochemical tracers. Water sampling occurred from May to August (wet season 2022) and January to March (dry season 2023); at an inland freshwater spring and on Biscayne Bay. Water samples were analyzed for δ18O and δ2H values, and Sr2+/Ca2+ ratios as geochemical tracers. The highest and lowest salinity values observed in the wet and dry seasons, at both the freshwater spring and Biscayne Bay sites, were before and after a major rain event, respectively. The chemical analysis supports that rain is the dominant source of freshwater input into the bay at our sampling location, and the freshwater spring is dominated by groundwater and canal water during the wet season. During the dry season, groundwater and canal water are the dominant source for the sampling location in Biscayne Bay and the dominant source of freshwater input for the freshwater spring. However, all three endmembers contribute seasonally. Understanding freshwater inputs to this crucial estuary will provide important information for current restoration efforts of Biscayne Bay, specifically around the Deering Estate area.more » « less
-
This data publication includes code and results from a systematic literature review on the current state of near-term forecasting of freshwater quality. The review aimed to address the following questions: (1) Freshwater variables, scales, models, and skill: Which freshwater variables and temporal scales are most commonly targeted for near-term forecasts, and what modeling methods are most commonly employed to develop these forecasts? How is the accuracy of freshwater quality forecasts assessed, and how accurate are they? How is uncertainty typically incorporated into water quality forecast output? (2) Forecast infrastructure and workflows: Are iterative, automated workflows commonly employed in near-term freshwater quality forecasting? How are forecasts validated and archived? (3) Human dimensions: What is the stated motivation for development of most near-term freshwater quality forecasts, and who are the most common end users (if any)? How are end users engaged in forecast development? An initial search was conducted for published papers presenting freshwater quality forecasts from 1 January 2017 to 17 February 2022 in the Web of Science Core Collection. Results were subsequently analyzed in three stages. First, paper titles were screened for relevance. Second, an initial screen was conducted to assess whether each paper presented a near-term freshwater quality forecast. Third, papers that passed the initial screen were analyzed using a standardized matrix to assess the state of near-term freshwater quality forecasting and identify areas of recent progress and ongoing challenges. Additional details regarding the systematic literature search and review are presented in the Methods section of the metadata.more » « less
-
Abstract The Threespine Stickleback is ancestrally a marine fish, but many marine populations breed in fresh water (i.e., are anadromous), facilitating their colonization of isolated freshwater habitats a few years after they form. Repeated adaptation to fresh water during at least 10 My and continuing today has led to Threespine Stickleback becoming a premier system to study rapid adaptation. Anadromous and freshwater stickleback breed in sympatry and may hybridize, resulting in introgression of freshwater-adaptive alleles into anadromous populations, where they are maintained at low frequencies as ancient standing genetic variation. Anadromous stickleback have accumulated hundreds of freshwater-adaptive alleles that are disbursed as few loci per marine individual and provide the basis for adaptation when they colonize fresh water. Recent whole-lake experiments in lakes around Cook Inlet, Alaska have revealed how astonishingly rapid and repeatable this process is, with the frequency of 40% of the identified freshwater-adaptive alleles increasing from negligible (∼1%) in the marine founder to ≥50% within ten generations in fresh water, and freshwater phenotypes evolving accordingly. These high rates of genomic and phenotypic evolution imply very intense directional selection on phenotypes of heterozygotes. Sexual recombination rapidly assembles freshwater-adaptive alleles that originated in different founders into multilocus freshwater haplotypes, and regions important for adaptation to freshwater have suppressed recombination that keeps advantageous alleles linked within large haploblocks. These large haploblocks are also older and appear to have accumulated linked advantageous mutations. The contemporary evolution of Threespine Stickleback has provided broadly applicable insights into the mechanisms that facilitate rapid adaptation.more » « less
An official website of the United States government

