skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: State-of-the-art review of near-term freshwater forecasting literature published between 2017 and 2022
This data publication includes code and results from a systematic literature review on the current state of near-term forecasting of freshwater quality. The review aimed to address the following questions: (1) Freshwater variables, scales, models, and skill: Which freshwater variables and temporal scales are most commonly targeted for near-term forecasts, and what modeling methods are most commonly employed to develop these forecasts? How is the accuracy of freshwater quality forecasts assessed, and how accurate are they? How is uncertainty typically incorporated into water quality forecast output? (2) Forecast infrastructure and workflows: Are iterative, automated workflows commonly employed in near-term freshwater quality forecasting? How are forecasts validated and archived? (3) Human dimensions: What is the stated motivation for development of most near-term freshwater quality forecasts, and who are the most common end users (if any)? How are end users engaged in forecast development? An initial search was conducted for published papers presenting freshwater quality forecasts from 1 January 2017 to 17 February 2022 in the Web of Science Core Collection. Results were subsequently analyzed in three stages. First, paper titles were screened for relevance. Second, an initial screen was conducted to assess whether each paper presented a near-term freshwater quality forecast. Third, papers that passed the initial screen were analyzed using a standardized matrix to assess the state of near-term freshwater quality forecasting and identify areas of recent progress and ongoing challenges. Additional details regarding the systematic literature search and review are presented in the Methods section of the metadata.  more » « less
Award ID(s):
1933016 1753639 1933102
PAR ID:
10478937
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Edition / Version:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Near‐term freshwater forecasts, defined as sub‐daily to decadal future predictions of a freshwater variable with quantified uncertainty, are urgently needed to improve water quality management as freshwater ecosystems exhibit greater variability due to global change. Shifting baselines in freshwater ecosystems due to land use and climate change prevent managers from relying on historical averages for predicting future conditions, necessitating near‐term forecasts to mitigate freshwater risks to human health and safety (e.g., flash floods, harmful algal blooms) and ecosystem services (e.g., water‐related recreation and tourism). To assess the current state of freshwater forecasting and identify opportunities for future progress, we synthesized freshwater forecasting papers published in the past 5 years. We found that freshwater forecasting is currently dominated by near‐term forecasts of waterquantityand that near‐term waterqualityforecasts are fewer in number and in the early stages of development (i.e., non‐operational) despite their potential as important preemptive decision support tools. We contend that more freshwater quality forecasts are critically needed and that near‐term water quality forecasting is poised to make substantial advances based on examples of recent progress in forecasting methodology, workflows, and end‐user engagement. For example, current water quality forecasting systems can predict water temperature, dissolved oxygen, and algal bloom/toxin events 5 days ahead with reasonable accuracy. Continued progress in freshwater quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater quantity forecasting (e.g., machine learning modeling methods). In addition, future development of effective operational freshwater quality forecasts will require substantive engagement of end users throughout the forecast process, funding, and training opportunities. Looking ahead, near‐term forecasting provides a hopeful future for freshwater management in the face of increased variability and risk due to global change, and we encourage the freshwater scientific community to incorporate forecasting approaches in water quality research and management. 
    more » « less
  2. Near-term, ecological forecasting with iterative model refitting and uncertainty partitioning has great promise for improving our understanding of ecological processes and the predictive skill of ecological models, but to date has been infrequently applied to predict biogeochemical fluxes. Bubble fluxes of methane (CH 4 ) from aquatic sediments to the atmosphere (ebullition) dominate freshwater greenhouse gas emissions, but it remains unknown how best to make robust near-term CH 4 ebullition predictions using models. Near-term forecasting workflows have the potential to address several current challenges in predicting CH 4 ebullition rates, including: development of models that can be applied across time horizons and ecosystems, identification of the timescales for which predictions can provide useful information, and quantification of uncertainty in predictions. To assess the capacity of near-term, iterative forecasting workflows to improve ebullition rate predictions, we developed and tested a near-term, iterative forecasting workflow of CH 4 ebullition rates in a small eutrophic reservoir throughout one open-water period. The workflow included the repeated updating of a CH 4 ebullition forecast model over time with newly-collected data via iterative model refitting. We compared the CH 4 forecasts from our workflow to both alternative forecasts generated without iterative model refitting and a persistence null model. Our forecasts with iterative model refitting estimated CH 4 ebullition rates up to 2 weeks into the future [RMSE at 1-week ahead = 0.53 and 0.48 log e (mg CH 4 m −2 d −1 ) at 2-week ahead horizons]. Forecasts with iterative model refitting outperformed forecasts without refitting and the persistence null model at both 1- and 2-week forecast horizons. Driver uncertainty and model process uncertainty contributed the most to total forecast uncertainty, suggesting that future workflow improvements should focus on improved mechanistic understanding of CH 4 models and drivers. Altogether, our study suggests that iterative forecasting improves week-to-week CH 4 ebullition predictions, provides insight into predictability of ebullition rates into the future, and identifies which sources of uncertainty are the most important contributors to the total uncertainty in CH 4 ebullition predictions. 
    more » « less
  3. Abstract Near‐term iterative forecasting is a powerful tool for ecological decision support and has the potential to transform our understanding of ecological predictability. However, to this point, there has been no cross‐ecosystem analysis of near‐term ecological forecasts, making it difficult to synthesize diverse research efforts and prioritize future developments for this emerging field. In this study, we analyzed 178 near‐term (≤10‐yr forecast horizon) ecological forecasting papers to understand the development and current state of near‐term ecological forecasting literature and to compare forecast accuracy across scales and variables. Our results indicated that near‐term ecological forecasting is widespread and growing: forecasts have been produced for sites on all seven continents and the rate of forecast publication is increasing over time. As forecast production has accelerated, some best practices have been proposed and application of these best practices is increasing. In particular, data publication, forecast archiving, and workflow automation have all increased significantly over time. However, adoption of proposed best practices remains low overall: for example, despite the fact that uncertainty is often cited as an essential component of an ecological forecast, only 45% of papers included uncertainty in their forecast outputs. As the use of these proposed best practices increases, near‐term ecological forecasting has the potential to make significant contributions to our understanding of forecastability across scales and variables. In this study, we found that forecastability (defined here as realized forecast accuracy) decreased in predictable patterns over 1–7 d forecast horizons. Variables that were closely related (i.e., chlorophyll and phytoplankton) displayed very similar trends in forecastability, while more distantly related variables (i.e., pollen and evapotranspiration) exhibited significantly different patterns. Increasing use of proposed best practices in ecological forecasting will allow us to examine the forecastability of additional variables and timescales in the future, providing a robust analysis of the fundamental predictability of ecological variables. 
    more » « less
  4. Abstract Near‐term, iterative ecological forecasts can be used to help understand and proactively manage ecosystems. To date, more forecasts have been developed for aquatic ecosystems than other ecosystems worldwide, likely motivated by the pressing need to conserve these essential and threatened ecosystems and increasing the availability of high‐frequency data. Forecasters have implemented many different modeling approaches to forecast freshwater variables, which have demonstrated promise at individual sites. However, a comprehensive analysis of the performance of varying forecast models across multiple sites is needed to understand broader controls on forecast performance. Forecasting challenges (i.e., community‐scale efforts to generate forecasts while also developing shared software, training materials, and best practices) present a useful platform for bridging this gap to evaluate how a range of modeling methods perform across axes of space, time, and ecological systems. Here, we analyzed forecasts from the aquatics theme of the National Ecological Observatory Network (NEON) Forecasting Challenge hosted by the Ecological Forecasting Initiative. Over 100,000 probabilistic forecasts of water temperature and dissolved oxygen concentration for 1–30 days ahead across seven NEON‐monitored lakes were submitted in 2023. We assessed how forecast performance varied among models with different structures, covariates, and sources of uncertainty relative to baseline null models. A similar proportion of forecast models were skillful across both variables (34%–40%), although more individual models outperformed the baseline models in forecasting water temperature (10 models out of 29) than dissolved oxygen (6 models out of 15). These top performing models came from a range of classes and structures. For water temperature, we found that forecast skill degraded with increases in forecast horizons, process‐based models, and models that included air temperature as a covariate generally exhibited the highest forecast performance, and that the most skillful forecasts often accounted for more sources of uncertainty than the lower performing models. The most skillful forecasts were for sites where observations were most divergent from historical conditions (resulting in poor baseline model performance). Overall, the NEON Forecasting Challenge provides an exciting opportunity for a model intercomparison to learn about the relative strengths of a diverse suite of models and advance our understanding of freshwater ecosystem predictability. 
    more » « less
  5. Abstract This paper summarizes the open community conventions developed by the Ecological Forecasting Initiative (EFI) for the common formatting and archiving of ecological forecasts and the metadata associated with these forecasts. Such open standards are intended to promote interoperability and facilitate forecast communication, distribution, validation, and synthesis. For output files, we first describe the convention conceptually in terms of global attributes, forecast dimensions, forecasted variables, and ancillary indicator variables. We then illustrate the application of this convention to the two file formats that are currently preferred by the EFI, netCDF (network common data form), and comma‐separated values (CSV), but note that the convention is extensible to future formats. For metadata, EFI's convention identifies a subset of conventional metadata variables that are required (e.g., temporal resolution and output variables) but focuses on developing a framework for storing information about forecast uncertainty propagation, data assimilation, and model complexity, which aims to facilitate cross‐forecast synthesis. The initial application of this convention expands upon the Ecological Metadata Language (EML), a commonly used metadata standard in ecology. To facilitate community adoption, we also provide a Github repository containing a metadata validator tool and several vignettes in R and Python on how to both write and read in the EFI standard. Lastly, we provide guidance on forecast archiving, making an important distinction between short‐term dissemination and long‐term forecast archiving, while also touching on the archiving of code and workflows. Overall, the EFI convention is a living document that can continue to evolve over time through an open community process. 
    more » « less