skip to main content


Title: Physicochemical properties and bio‐interfacial interactions of surface modified PDLLA‐PAMAM linear dendritic block copolymers
Abstract

Here, we demonstrate the applicability of self‐assembling linear‐dendritic block copolymers (LDBCs) and their nanoaggregates possessing varied surfaces as therapeutic nanocarriers. These LDBCs are comprised of a hydrophobic, linear polyester chemically coupled to a hydrophilic dendron polyamidoamine (PAMAM)—the latter of which acts as the surface of the self‐assembled nanoaggregate in aqueous media. To better understand how surface charge density affects the overall operability of these nanomaterials, we modified the nanoaggregate surface to yield cationic (NH3+), neutral (OH), and anionic (COO) surfaces. The effect of these modifications on the physicochemical properties (i.e., size, morphology, and surface charge density), colloidal stability, and cellular uptake mechanism of the polymeric nanocarrier were investigated. This comparative study demonstrates the viability of nanoaggregates formed from PDLLA‐PAMAM LDBCs to serve as nanocarriers for applications in drug delivery.

 
more » « less
Award ID(s):
1757220
NSF-PAR ID:
10449875
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
59
Issue:
19
ISSN:
2642-4150
Page Range / eLocation ID:
p. 2177-2192
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The exact expressions for the dipole, quadrupole, and octupoles of a collection ofNpoint charges involve summations of corresponding tensors over theNsites weighted by their charge magnitudes. When the point charges are atoms (in a molecule) theN‐site formula is an approximation, and one must integrate over the electron density to recover the exact multipoles. In the present work we revisit theN(N + 1)/2‐site point charge density model of Hall (Chem. Phys. Lett.6, 501, 1973) for the purpose of fitting ab initio derived multipole moment hypersurfaces using permutationally invariant polynomials (PIP). We examine new approaches in PIP‐fitting procedures for the dipole, quadrupole, octupole moments, and polarizability tensor surfaces (DMS, QMS, OMS and PTS, respectively) for a non‐polar CCl4and a polar CHCl3and show that compared to the primitiveN‐site model theN(N + 1)/2‐site model appreciably improves the relative RMSE of the DMS and does much more substantially so, by an order of magnitude, for the corresponding ones of QMS and OMS. Training datasets are obtained by sampling potential energies up to 18 000 cm−1above the global minima, generated by molecular dynamics simulations at the DFT B3LYP/aug‐cc‐pVDZ level of theory.

     
    more » « less
  2. Abstract

    The deposition of protective coatings on the spinel LiMn2O4(LMO) lithium‐ion battery cathode is effective in reducing Mn dissolution from the electrode surface. Although protective coatings positively affect LMO cycle life, much remains to be understood regarding the interface formed between these coatings and LMO. Using operando powder X‐ray diffraction with Rietveld refinement, it is shown that, in comparison to bare LMO, the lattice parameter of a model Au‐coated LMO cathode is significantly reduced upon relithiation. Less charge passes through Au‐coated LMO in comparison to bare LMO, suggesting that the reduced lattice parameter is associated with decreased Li+solubility in the Au‐coated LMO. Density functional theory calculations show that a more Li+‐deficient near‐surface is thermodynamically favorable in the presence of the Au coating, which may further stabilize these cathodes through suppressing formation of the Jahn–Teller distorted Li2Mn2O4phase at the surface. Electronic structure and chemical bonding analyses show enhanced hybridization between Au and LMO for delithiated surfaces leading to partial oxidation of Au upon delithiation. This study suggests that, in addition to transition metal dissolution from electrode surfaces, protective coating design must also balance potential energy effects induced by charge transfer at the electrode‐coating interface.

     
    more » « less
  3. Abstract

    This is the first report of molybdenum carbide‐based electrocatalyst for sulfur‐based sodium‐metal batteries. MoC/Mo2C is in situ grown on nitrogen‐doped carbon nanotubes in parallel with formation of extensive nanoporosity. Sulfur impregnation (50 wt% S) results in unique triphasic architecture termed molybdenum carbide–porous carbon nanotubes host (MoC/Mo2C@PCNT–S). Quasi‐solid‐state phase transformation to Na2S is promoted in carbonate electrolyte, with in situ time‐resolved Raman, X‐ray photoelectron spectroscopy, and optical analyses demonstrating minimal soluble polysulfides. MoC/Mo2C@PCNT–S cathodes deliver among the most promising rate performance characteristics in the literature, achieving 987 mAh g−1at 1 A g−1, 818 mAh g−1at 3 A g−1, and 621 mAh g−1at 5 A g−1. The cells deliver superior cycling stability, retaining 650 mAh g−1after 1000 cycles at 1.5 A g−1, corresponding to 0.028% capacity decay per cycle. High mass loading cathodes (64 wt% S, 12.7 mg cm−2) also show cycling stability. Density functional theory demonstrates that formation energy of Na2Sx(1 ≤x ≤ 4) on surface of MoC/Mo2C is significantly lowered compared to analogous redox in liquid. Strong binding of Na2Sx(1 ≤x ≤ 4) on MoC/Mo2C surfaces results from charge transfer between the sulfur and Mo sites on carbides’ surface.

     
    more » « less
  4. Abstract

    The nature of the processes at the origin of life that selected specific classes of molecules for broad incorporation into cells is controversial. Among those classes selected were polyisoprenoids and their derivatives. This paper tests the hypothesis that polyisoprenoids were early contributors to membranes in part because they (or their derivatives) could facilitate charge transport by quantum tunneling. It measures charge transport across self‐assembled monolayers (SAMs) of carboxyl‐terminated monoterpenoids (O2C(C9HX)) and alkanoates (O2C(C7HX)) with different degrees of unsaturation, supported on silver (AgTS) bottom electrodes, with Ga2O3/EGaIn top electrodes. Measurements of current density of SAMs of linear length‐matched hydrocarbons—both saturated and unsaturated—show that completely unsaturated molecules transport charge faster than those that are completely saturated by approximately a factor of ten. This increase in relative rates of charge transport correlates with the number of carbon–carbon double bonds, but not with the extent of conjugation. These results suggest that polyisoprenoids—even fully unsaturated—are not sufficiently good tunneling conductors for their conductivity to have favored them as building blocks in the prebiotic world.

     
    more » « less
  5. Abstract

    The nature of the processes at the origin of life that selected specific classes of molecules for broad incorporation into cells is controversial. Among those classes selected were polyisoprenoids and their derivatives. This paper tests the hypothesis that polyisoprenoids were early contributors to membranes in part because they (or their derivatives) could facilitate charge transport by quantum tunneling. It measures charge transport across self‐assembled monolayers (SAMs) of carboxyl‐terminated monoterpenoids (O2C(C9HX)) and alkanoates (O2C(C7HX)) with different degrees of unsaturation, supported on silver (AgTS) bottom electrodes, with Ga2O3/EGaIn top electrodes. Measurements of current density of SAMs of linear length‐matched hydrocarbons—both saturated and unsaturated—show that completely unsaturated molecules transport charge faster than those that are completely saturated by approximately a factor of ten. This increase in relative rates of charge transport correlates with the number of carbon–carbon double bonds, but not with the extent of conjugation. These results suggest that polyisoprenoids—even fully unsaturated—are not sufficiently good tunneling conductors for their conductivity to have favored them as building blocks in the prebiotic world.

     
    more » « less