skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The carbon footprint of cold chain food flows in the United States
Abstract The food system is an important contributor to carbon dioxide (CO 2 ) emissions. The refrigerated food supply chain is an energy-intensive, nutritious and high-value part of the food system, making it particularly important to consider. In this study, we develop a novel model of cold chain food flows between counties in the United States. Specifically, we estimate truck transport via roadways of meat and prepared foodstuffs for the year 2017. We use the roadway travel distance in our model framework rather than the haversine distance between two locations to improve the estimate for long-haul freight with a temperature-controlled system. This enables us to more accurately calculate the truck fuel consumption and CO 2 emissions related to cold chain food transport. We find that the cold chain transport of meat emitted 8.4 × 10 6 t CO 2 yr −1 and that of prepared foodstuffs emitted 14.5 × 10 6 t CO 2 yr −1 , which is in line with other studies. Meat has a longer average refrigerated transport distance, resulting in higher transport CO 2 emissions per kg than processed foodstuffs. We also find that CO 2 emissions from cold chain food transport are not projected to significantly increase under the temperatures projected to occur with climate change in 2045. These county-level cold chain food flows could be used to inform infrastructure investment, supply chain decision-making and environmental footprint studies.  more » « less
Award ID(s):
1844773
PAR ID:
10335811
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Environmental Research: Infrastructure and Sustainability
Volume:
2
Issue:
2
ISSN:
2634-4505
Page Range / eLocation ID:
021002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The cold chain (refrigerated supply chain) is an important application of refrigeration technologies. The capacity of the cold chain industry is growing rapidly in emerging economies such as China, leading to significant environmental impacts, especially greenhouse gas (GHG) emissions. By conducting the literature review, this study begins with presenting a comprehensive overview of the cold chain industry in China. We observed that China has a large total cold warehouse capacity but low capacity per capita. Then, we directly link the example of the cold chain in China to the methods of evaluating the GHG emissions from the cold chain industry. It is observed that existing studies either primarily focus on the lifecycle of food with less consideration on the cold chain facilities or primarily focus on the lifetime of a certain stage of the cold chain (e.g., refrigerated transportation) with less consideration on food. Neither frameworks capture the entire cold chain system. Moreover, we argue that existing studies lack investigations of the cold chain GHG emissions on the national scale. To evaluate the overall GHG emissions, we recommended that one can use the bottom-up approach. First, use the lifecycle assessment (LCA) to estimate the single-unit level (e.g., one kg food, one particular refrigerated warehouse) cold chain emissions. Second, aggregate up to the national scale by the distribution patterns of the cold chain networks. Finally, we identify the crucial future issues regarding collecting cold chain lifecycle inventory data, investigating the cold chain network and the overall environmental impacts in China, regulation and technology needs for expanding the clean refrigeration technologies, and the implications of the cold chain development to water, land, and society. 
    more » « less
  2. The demand for ‘local food’ by U.S. consumers has grown markedly over the last several decades, accompanied by confusion over how to define local food. Is ‘local’ food defined by the location of the farm, food processing factory, distribution warehouse, or all three? Is ‘local’ food defined by geographic, political, or biophysical boundaries? Is ‘local’ solely farm-to-table or can it include factories? This study evaluates food commodity flow ‘localness’ using jurisdictional boundaries and physical distance to investigate the potential for food system transformation and the tradeoffs inherent to ‘localizing’ food production. We take a supply chain approach by making data-driven distinctions between farm-based flows of food and industrial, energy and nonfood (IENF) crops, and manufacturing/distribution flows of food and agriculturally-derived industrial inputs. We analyze the diversity, distance (a proxy for environmental impact), political boundaries, population, weight, and price (net selling value) of food commodity flows. The diversity of a community's food supply has an optimal range of zero to four-hundred miles. We find tradeoffs between food system diversity and local food sourcing, sustainability, and self-sufficiency. As communities look to improve food system resilience, they will need to balance food-miles and the other values associated with local food. 
    more » « less
  3. Abstract Food consumption and production are separated in space through flows of food along complex supply chains. These food supply chains are critical to our food security, making it important to evaluate them. However, detailed spatial information on food flows within countries is rare. The goal of this paper is to estimate food flows between all county pairs within the United States. To do this, we develop the Food Flow Model, a data-driven methodology to estimate spatially explicit food flows. The Food Flow Model integrates machine learning, network properties, production and consumption statistics, mass balance constraints, and linear programming. Specifically, we downscale empirical information on food flows between 132 Freight Analysis Framework locations (17 292 potential links) to the 3142 counties and county-equivalents of the United States (9869 022 potential links). Subnational food flow estimates can be used in future work to improve our understanding of vulnerabilities within a national food supply chain, determine critical infrastructures, and enable spatially detailed footprint assessments. 
    more » « less
  4. Solving the wicked problems of food system sustainability requires a process of knowledge co-production among diverse actors in society. We illustrate a generalized workflow for knowledge co-production in food systems with a pair of case studies from the response of the meat and dairy production sectors in the wake of the COVID-19 pandemic. The first case study serves as an example of a scientific workflow and uses a GIS method (location allocation) to examine the supply chain linkages between meat and dairy producers and processors in Ohio. This analysis found that meat producers and processors are less clustered and more evenly distributed across the state than dairy producers and processors, with some dairy processors potentially needing to rely on supply from producers up to 252 km away. The second case study in California adds an example of a stakeholder workflow in parallel to a scientific workflow and describes the outcome of a series of interviews with small and mid-scale meat producers and processors concerning their challenges and opportunities, with the concentration of processors arising as the top challenge faced by producers. We present a pair of workflow diagrams for the two case studies that illustrate where the processes of knowledge co-production are situated. Examining these workflow processes highlights the importance of data privacy, data governance, and boundary spanners that connect stakeholders. 
    more » « less
  5. Abstract U.S. rice paddies, critical for food security, are increasingly contributing to non‐CO2greenhouse gas (GHG) emissions like methane (CH4) and nitrous oxide (N2O). Yet, the full assessment of GHG balance, considering trade‐offs between soil organic carbon (SOC) change and non‐CO2GHG emissions, is lacking. Integrating an improved agroecosystem model with a meta‐analysis of multiple field studies, we found that U.S. rice paddies were the rapidly growing net GHG emission sources, increased 138% from 3.7 ± 1.2 Tg CO2eq yr−1in the 1960s to 8.9 ± 2.7 Tg CO2eq yr−1in the 2010s. CH4, as the primary contributor, accounted for 10.1 ± 2.3 Tg CO2eq yr−1in the 2010s, alongside a notable rise in N2O emissions by 0.21 ± 0.03 Tg CO2eq yr−1. SOC change could offset 14.0% (1.45 ± 0.46 Tg CO2eq yr−1) of the climate‐warming effects of soil non‐CO2GHG emissions in the 2010s. This escalation in net GHG emissions is linked to intensified land use, increased atmospheric CO2, higher synthetic nitrogen fertilizer and manure application, and climate change. However, no/reduced tillage and non‐continuous irrigation could reduce net soil GHG emissions by approximately 10% and non‐CO2GHG emissions by about 39%, respectively. Despite the rise in net GHG emissions, the cost of achieving higher rice yields has decreased over time, with an average of 0.84 ± 0.18 kg CO2eq ha−1emitted per kilogram of rice produced in the 2010s. The study suggests the potential for significant GHG emission reductions to achieve climate‐friendly rice production in the U.S. through optimizing the ratio of synthetic N to manure fertilizer, reducing tillage, and implementing intermittent irrigation. 
    more » « less