skip to main content


Title: Mapping local food self-sufficiency in the U.S. and the tradeoffs for food system diversity
The demand for ‘local food’ by U.S. consumers has grown markedly over the last several decades, accompanied by confusion over how to define local food. Is ‘local’ food defined by the location of the farm, food processing factory, distribution warehouse, or all three? Is ‘local’ food defined by geographic, political, or biophysical boundaries? Is ‘local’ solely farm-to-table or can it include factories? This study evaluates food commodity flow ‘localness’ using jurisdictional boundaries and physical distance to investigate the potential for food system transformation and the tradeoffs inherent to ‘localizing’ food production. We take a supply chain approach by making data-driven distinctions between farm-based flows of food and industrial, energy and nonfood (IENF) crops, and manufacturing/distribution flows of food and agriculturally-derived industrial inputs. We analyze the diversity, distance (a proxy for environmental impact), political boundaries, population, weight, and price (net selling value) of food commodity flows. The diversity of a community's food supply has an optimal range of zero to four-hundred miles. We find tradeoffs between food system diversity and local food sourcing, sustainability, and self-sufficiency. As communities look to improve food system resilience, they will need to balance food-miles and the other values associated with local food.  more » « less
Award ID(s):
2115169
NSF-PAR ID:
10336560
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied geography
Volume:
143
ISSN:
0143-6228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With ever‐growing populations, cities are increasingly interested in ensuring a well‐functioning food system. However, knowledge of variation between individual city food systems is limited. This is particularly true in countries such as India, experiencing significant issues related to food security and sustainability. This paper advances the understanding of urban food systems, by analyzing the unique food systems of nine cities within India, through the integration of multiple city‐specific data sources including demand of residents, visitors and industries, and commodity‐specific supply chains to assess nutrition, environmental impact, and supply risk. This work finds a large degree of intercity food system variability across multiple food system characteristics. Specifically, levels of undernutrition vary, with the percentage of city populations who are underconsuming protein ranging from 0% to 70%, and for calories 0% to 90%. Environmental impacts (consumptive water loss, land use, and greenhouse gas emissions) of urban food demand also show variation, largely influenced by differing composition of residential diet. Greenhouse gas emissions are also largely influenced by location of production and spatially informed energy intensity of irrigation. Supply chain distance (“food‐miles”) also vary by city, with the range of 196 (Pondicherry) to 1,137 (Chennai) km/Mg—shorter than more industrialized nations such as the United States. Evaluating supply chain risk in terms of water scarcity in food‐producing regions that serve city demand finds production locations, on average, to be less water‐scarce than the watersheds local to the urban environments. This suggests water‐intensive agriculture may at times be best located at a distance from urban centers and competing demands.

     
    more » « less
  2. Abstract

    Civil infrastructure underpins urban receipts of food, energy, and water (FEW) produced in distant watersheds. In this study, we map flows of FEW goods from watersheds of the contiguous United States to major population centers and highlight the critical infrastructure that supports FEW flows. To do this, we draw upon detailed records of agriculture, electricity, and public water supply production and couple them with commodity flow and infrastructure information. We also compare the flows of virtual water embedded in food and energy commodity flows with physical water flows in inter‐basin water transfer projects around the country. We found that the virtual blue water transfers through crops and electricity to major US cities was 53 billion and 8 billion m3in 2017, respectively, while physical interbasin water transfers for crops, electricity, and public supply water averaged 20.8 billion m3. Highways are the primary infrastructure used to import virtual water associated with food and fuel into cities, although waterways and railways are most utilized for long‐distance transport. All of the 204 watersheds in the contiguous US support the food, energy, and/or water supplies of major US cities, with dependencies stretching far beyond each city's borders. Still, most cities source the majority of their FEW and embedded water resources from nearby watersheds. Infrastructure such as water supply dams and inland ports serve as important buffers for both local and supply‐chain sourced water stress. These findings can inform efforts to reduce water resources and infrastructure risks in domestic supply chains.

     
    more » « less
  3. Local food systems, in which consumers source food from nearby farmers, offer a sustainable alternative to the modern industrial food supply system. However, scaling up local food production to meet consumer demand will require farmers to allocate more land to this purpose. This paper describes an agent-based model that represents commodity-producing Iowa farmers and their decisions about converting some of their acreage to specialty crop production for local consumption. Farmer agents’ land-use decisions are informed by messages passed to them via their social connections with other farmers in their communities and messages from agricultural extension agents. Preliminary experimentation revealed that leveraging extension agents to increase the frequency and strength of messages to farmers in support of local food production has a modest positive impact on adoption. By itself, however, this intervention is unlikely to yield significant improvements to food system sustainability. 
    more » « less
  4. This experimental research studies consumer preferences for local food accompanied by various label definitions. 374 adult participants made purchase decisions for local oysters characterized by multiple definitions of the term local. Results show consumers are less willing to pay for local oysters when local is defined as harvested within 400 miles than they are for oysters harvested within 100 miles or 25 miles. Willingness to pay (WTP) also increases when local is defined as being harvested in a watershed from the same state of the purchase location rather than in an adjacent state. Interestingly, the highest WTP is when no definition of local is provided. 
    more » « less
  5. Abstract

    Food supply chains are essential for distributing goods from production to consumption points. These complex supply chains are important for food security and availability. Recent research has developed novel methods to estimate food flows with high spatial resolution, but we do not currently understand how fine-grained food supply chains vary in time. In this study, we use an improved version of the Food Flow Model to estimate food flows (kg) between all county pairs across all food commodity groups for the years 2007, 2012, and 2017 (which requires estimating 206.3 million links). We then determine the core counties to the US food flow networks through time with a multi-criteria decision analysis technique. Our estimates of county-to-county food flows in time are freely available with this paper and could be useful for future research, policy, and decision-making.

     
    more » « less