skip to main content


Title: Valence-, Dipole- and Quadropole-Bound Electronically Excited States of Closed-Shell Anions Formed by Deprotonation of Cyano- and Ethynyl-Disubstituted Polycyclic Aromatic Hydrocarbons
Dicyano-functionalized benzene and naphthalene anion derivatives exhibit a relatively rich population of electronically excited states in stark contrast to many assumptions regarding the photophysics of anions in general. The present work has quantum chemically analyzed the potential electronically excited states of closed-shell anions created by replacing hydrogen atoms with valence-bound lone pairs in benzene and naphthalene difunctionalized with combinations of -CN and -C2H. Dicyanobenzene anion derivatives can exhibit dipole-bound excited states as long as the cyano groups are not in para position to one another. This also extends to cyanoethynylbenzene anions as well as deprotonated dicyano- and cyanoethynylnaphthalene anion derivatives. Diethynyl functionalization is less consistent. While large dipole moments are created in some cases for deprotonation on the -C2H group itself, the presence of electronically excited states beyond those that are dipole-bound is less consistent. Beyond these general trends, 2-dicyanonaphthalene-34 gives strong indication for exhibiting a quadrupole-bound excited state, and the 1-cyanoethynylnaphthalene-29 and -36 anion derivatives are shown to possess as many as two valence-bound excited states and one dipole-bound excited state. These photophysical properties may have an influence on regions where polycyclic aromatic hydrocarbons are known to exist such as in various astrochemical environments or even in combustion flames.  more » « less
Award ID(s):
1757220 1757888
NSF-PAR ID:
10335963
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemistry
Volume:
4
Issue:
1
ISSN:
2624-8549
Page Range / eLocation ID:
42 to 56
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Few anions exhibit electronically excited states, and, if they do, the one or two possible excitations typically transpire beyond the visible spectrum into the near-infrared. These few, red-shifted electronic absorption features make anions tantalizing candidates as carriers of the diffuse interstellar bands (DIBs), a series of mostly unknown, astronomically ubiquitous absorption features documented for over a century. The recent interstellar detection of benzonitrile implies that cyano-functionalized polycyclic aromatic hydrocarbon (PAH) anions may be present in space. The presently reported quantum chemical work explores the electronic properties of deprotonated benzene, naphthalene, and anthracene anions functionalized with a single cyano group. Both the absorption and emission properties of the electronically excited states are explored. The findings show that the larger anions absorption and emission energies possess both valence and dipole bound excitations in the 450–900 nm range with oscillator strengths for both types of >1×10−4. The valence and dipole bound excited state transitions will produce slightly altered substructure from one another making them appear to originate with different molecules. The known interstellar presence of related molecules, the two differing natures of the excited states for each, and the wavelength range of peaks for these cyano-functionalized PAH anions are coincident with DIB properties. Finally, the methods utilized appear to be able to predict the presence of dipole-bound excited states to within a 1.0 meV window relative to the electron binding energy. 
    more » « less
  2. Functionalizing deprotonated polycyclic aromatic hydrocarbon (PAH) anion derivatives gives rise to electronically excited states in the resulting anions. While functionalization with −OH and −C 2 H, done presently, does not result in the richness of electronically excited states as it does with −CN done previously, the presence of dipole-bound excited states and even some valence excited states are predicted in this quantum chemical analysis. Most notably, the more electron withdrawing −C 2 H group leads to valence excited states once the number of rings in the molecule reaches three. Dipole-bound excited states arise when the dipole moment of the corresponding neutral radical is large enough (likely around 2.0 D), and this is most pronounced when the hydrogen atom is removed from the functional group itself regardless of whether functionalized by a hydroxyl or enthynyl group. Deprotonatation of the hydroxyl group in the PAH creates a ketone with a delocalized highest occupied molecular orbital (HOMO) unlike deprotonation of a hydrogen on the ring where a localized lone pair on one of the carbon atoms serves as the HOMO. As a result, hydroxyl functionlization and subsequent deprotonation of PAHs creates molecules that begin to exhibit structures akin to nucleic acids. However, the electron withdrawing −C 2 H has more excited states than the electron donating −OH functionalized PAH. This implies that the −C 2 H electron withdrawing group can absorb a larger energy range of photons, which signifies an increasing likelihood of being stabilized in the harsh conditions of the interstellar medium. 
    more » « less
  3. Anionic states of benzonitrile are investigated by high-level electronic structure methods. The calculations using equation-of-motion coupled-cluster theory for electron-attached states confirm earlier conclusions drawn from the photodetachment experiments wherein the ground state of the anion is the valence 2 B 1 state, while the dipole bound state lies adiabatically ∼0.1 eV above. Inclusion of triple excitations and zero-point vibrational energies is important for recovering relative state correct ordering. The computed Franck–Condon factors and photodetachment cross-sections further confirm that the observed photodetachment spectrum originates from the valence anion. The valence anion is electronically bound at its equilibrium geometry, but it is metastable at the equilibrium geometry of the neutral. The dipole-bound state, which is the only bound anionic state at the neutral equilibrium geometry, may serve as a gateway state for capturing the electron. Thus, the emerging mechanistic picture entails electron capture via a dipole bound state, followed by non-adiabatic relaxation forming valence anions. 
    more » « less
  4. Deprotonated azabenzene anions require dipole moments in their corresponding neutral radicals of more than 3.5 D in order to exhibit dipole-bound excited states (DBXSs). This is notably larger than the typical 2.0–2.5 D associated with such behavior. Similar computational analysis on deprotonated purine derivatives also conducted herein only requires the more traditional 2.5 D dipole moment, implying that the single six-membered azabenzene rings have additional factors at play in binding diffuse electrons. The present study also shows that the use of coupled cluster singles and doubles with a double-zeta correlation consistent basis set and additional diffuse functions originating from the center-of-charge for all aspects of the computations decreases the error in predicting DBXSs to less than 0.006 eV at worst and likely less than 0.003 eV for most cases. These results can influence the modeling of molecular spectra beyond fundamental chemical curiosity with application to astrochemistry, solar energy harvesting, and combustion chemistry among others.

     
    more » « less
  5. Super-reducing excited states have the potential to activate strong bonds, leading to unprecedented photoreactivity. Excited states of radical anions, accessed via reduction of a precatalyst followed by light absorption, have been proposed to drive photoredox transformations under super-reducing conditions. Here, we investigate the radical anion of naphthalene monoimide as a photoreductant and find that the radical doublet excited state has a lifetime of 24 ps, which is too short to facilitate photoredox activity. To account for the apparent photoreactivity of the radical anion, we identify an emissive two-electron reduced Meisenheimer complex of naphthalene monoimide, [NMI(H)](-). The singlet excited state of [NMI(H)](-) is a potent reductant (-3.08 V vs Fc/Fc(+)), is long-lived (20 ns), and its emission can be dynamically quenched by chloroarenes to drive a radical photochemistry, establishing that it is this emissive excited state that is competent for reported C-C and C-P coupling reactivity. These results provide a mechanistic basis for photoreactivity at highly reducing potentials via singlet excited state manifolds and lays out a clear path for the development of exceptionally reducing photoreagents derived from electron-rich closed-shell anions. 
    more » « less