Radical couplings of cyanopyridine radical anions represent a valuable technology for functionalizing pyridines, which are prevalent throughout pharmaceuticals, agrochemicals, and materials. Installing the cyano group, which facilitates the necessary radical anion formation and stabilization, is challenging and limits the use of this chemistry to simple cyanopyridines. We discovered that pyridylphosphonium salts, installed directly and regioselectively from C–H precursors, are useful alternatives to cyanopyridines in radical–radical coupling reactions, expanding the scope of this reaction manifold to complex pyridines. Methods for both alkylation and amination of pyridines mediated by photoredox catalysis are described. Additionally, we demonstrate late-stage functionalization of pharmaceuticals, highlighting an advantage of pyridylphosphonium salts over cyanopyridines.
more »
« less
How Radical Are "Radical" Photocatalysts? A Closed-Shell Meisenheimer Complex Is Identified as a Super-Reducing Photoreagent
Super-reducing excited states have the potential to activate strong bonds, leading to unprecedented photoreactivity. Excited states of radical anions, accessed via reduction of a precatalyst followed by light absorption, have been proposed to drive photoredox transformations under super-reducing conditions. Here, we investigate the radical anion of naphthalene monoimide as a photoreductant and find that the radical doublet excited state has a lifetime of 24 ps, which is too short to facilitate photoredox activity. To account for the apparent photoreactivity of the radical anion, we identify an emissive two-electron reduced Meisenheimer complex of naphthalene monoimide, [NMI(H)](-). The singlet excited state of [NMI(H)](-) is a potent reductant (-3.08 V vs Fc/Fc(+)), is long-lived (20 ns), and its emission can be dynamically quenched by chloroarenes to drive a radical photochemistry, establishing that it is this emissive excited state that is competent for reported C-C and C-P coupling reactivity. These results provide a mechanistic basis for photoreactivity at highly reducing potentials via singlet excited state manifolds and lays out a clear path for the development of exceptionally reducing photoreagents derived from electron-rich closed-shell anions.
more »
« less
- Award ID(s):
- 1855531
- PAR ID:
- 10352270
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 143
- Issue:
- 35
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 14352–14359
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Intermolecular C–H difluoromethoxylation of (hetero)arenes remains a long-standing and unsolved problem in organic synthesis. Herein, we report the first catalytic protocol employing a redox-active difluoromethoxylating reagent 1a and photoredox catalysts for the direct C–H difluoromethoxylation of (hetero)arenes. Our approach is operationally simple, proceeds at room temperature, and uses bench-stable reagents. Its synthetic utility is highlighted by mild reaction conditions that tolerate a wide variety of functional groups and biorelevant molecules. Experimental and computational studies suggest single electron transfer (SET) from excited photoredox catalysts to 1a forming a neutral radical intermediate that liberates the OCF 2 H radical exclusively. Addition of this radical to (hetero)arenes gives difluoromethoxylated cyclohexadienyl radicals that are oxidized and deprotonated to afford the products of difluoromethoxylation.more » « less
-
Dicyano-functionalized benzene and naphthalene anion derivatives exhibit a relatively rich population of electronically excited states in stark contrast to many assumptions regarding the photophysics of anions in general. The present work has quantum chemically analyzed the potential electronically excited states of closed-shell anions created by replacing hydrogen atoms with valence-bound lone pairs in benzene and naphthalene difunctionalized with combinations of -CN and -C2H. Dicyanobenzene anion derivatives can exhibit dipole-bound excited states as long as the cyano groups are not in para position to one another. This also extends to cyanoethynylbenzene anions as well as deprotonated dicyano- and cyanoethynylnaphthalene anion derivatives. Diethynyl functionalization is less consistent. While large dipole moments are created in some cases for deprotonation on the -C2H group itself, the presence of electronically excited states beyond those that are dipole-bound is less consistent. Beyond these general trends, 2-dicyanonaphthalene-34 gives strong indication for exhibiting a quadrupole-bound excited state, and the 1-cyanoethynylnaphthalene-29 and -36 anion derivatives are shown to possess as many as two valence-bound excited states and one dipole-bound excited state. These photophysical properties may have an influence on regions where polycyclic aromatic hydrocarbons are known to exist such as in various astrochemical environments or even in combustion flames.more » « less
-
The use of photoredox catalysis for the synthesis of small organic molecules relies on harnessing and converting the energy in visible light to drive reactions. Specifically, photon energy is used to generate radical ion species that can be harnessed through subsequent reaction steps to form a desired product. Cyanoarenes are widely used as arylating agents in photoredox catalysis because of their stability as persistent radical anions. However, there are marked, unexplained variations in product yields when using different cyanoarenes. In this study, the quantum yield and product yield of an α-aminoarylation photoredox reaction between five cyanoarene coupling partners and N-phenylpyrrolidine were characterized. Significant discrepancies in cyanoarene consumption and product yield suggested a chemically irreversible, unproductive pathway in the reaction. Analysis of the side products in the reaction demonstrated the formation of species consistent with radical anion fragmentation. Electrochemical and computational methods were used to study the fragmentation of the different cyanoarenes and revealed a correlation between product yield and cyanoarene radical anion stability. Kinetic modeling of the reaction demonstrates that cross-coupling selectivity between N-phenylpyrrolidine and the cyanoarene is controlled by the same phenomenon present in the persistent radical effect.more » « less
-
Functionalizing deprotonated polycyclic aromatic hydrocarbon (PAH) anion derivatives gives rise to electronically excited states in the resulting anions. While functionalization with −OH and −C 2 H, done presently, does not result in the richness of electronically excited states as it does with −CN done previously, the presence of dipole-bound excited states and even some valence excited states are predicted in this quantum chemical analysis. Most notably, the more electron withdrawing −C 2 H group leads to valence excited states once the number of rings in the molecule reaches three. Dipole-bound excited states arise when the dipole moment of the corresponding neutral radical is large enough (likely around 2.0 D), and this is most pronounced when the hydrogen atom is removed from the functional group itself regardless of whether functionalized by a hydroxyl or enthynyl group. Deprotonatation of the hydroxyl group in the PAH creates a ketone with a delocalized highest occupied molecular orbital (HOMO) unlike deprotonation of a hydrogen on the ring where a localized lone pair on one of the carbon atoms serves as the HOMO. As a result, hydroxyl functionlization and subsequent deprotonation of PAHs creates molecules that begin to exhibit structures akin to nucleic acids. However, the electron withdrawing −C 2 H has more excited states than the electron donating −OH functionalized PAH. This implies that the −C 2 H electron withdrawing group can absorb a larger energy range of photons, which signifies an increasing likelihood of being stabilized in the harsh conditions of the interstellar medium.more » « less