skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Giant topological Hall effect in centrosymmetric tetragonal Mn2−xZnxSb
Topological magnetism typically appears in noncentrosymmetric compounds or compounds with geometric frustration. Here, we report the effective tuning of magnetism in centrosymmetric tetragonal Mn2−xZnxSb by Zn substitution. The magnetism is found to be closely coupled to the transport properties, giving rise to a very large topological Hall effect with fine-tuning of Zn content, which even persists to high temperature (∼250K). The further magnetoentropic analysis suggests that the topological Hall effect is possibly associated with topological magnetism. Our finding suggests Mn2−xZnxSb is a candidate material for a centrosymmetric tetragonal topological magnetic system, offering opportunities for studying and tuning spin textures and developing near room temperature spin-based devices.  more » « less
Award ID(s):
1832031
PAR ID:
10336012
Author(s) / Creator(s):
Date Published:
Journal Name:
Physical review
Volume:
104
Issue:
17
ISSN:
2469-9950
Page Range / eLocation ID:
174419
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spintronics, an evolving interdisciplinary field at the intersection of magnetism and electronics, explores innovative applications of electron charge and spin properties for advanced electronic devices. The topological Hall effect (THE), a key component in spintronics, has gained significance due to emerging theories surrounding noncoplanar chiral spin textures. This study focuses on Mn2‐xZnxSb, a material crystalizing in centrosymmetric space group with rich magnetic phases tunable by Zn contents. Through comprehensive magnetic and transport characterizations, we found that the high‐Zn (x > 0.6) samples display THE which is enhanced with decreasing temperature, while THE in the low‐Zn (x < 0.6) samples show an opposite trend. The coexistence of those distinct temperature dependencies for THE suggests very different magnetic interactions/structures for different compositions and underscores the strong coupling between magnetism and transport in Mn2‐xZnxSb. The findings contribute to understanding topological magnetism in centrosymmetric tetragonal lattices, establishing Mn2‐xZnxSb as a unique platform for exploring tunable transport effects and opening avenues for further exploration in the realm of spintronics. 
    more » « less
  2. Magnetotransport and magnetism of epitaxial SmTiO3/EuTiO3 heterostructures grown by molecular beam epitaxy are investigated. It is shown that the polar discontinuity at the interface introduces ∼3.9 × 1014 cm−2 carriers into the EuTiO3. The itinerant carriers exhibit two distinct contributions to the spontaneous Hall effect. The anomalous Hall effect appears despite a very small magnetization, indicating a non-collinear spin structure, and the second contribution resembles a topological Hall effect. Qualitative differences exist in the temperature dependence of both Hall effects when compared to uniformly doped EuTiO3. In particular, the topological Hall effect contribution appears at higher temperatures and the anomalous Hall effect shows a sign change with temperature. The results suggest that interfaces can be used to tune topological phenomena in itinerant magnetic systems. 
    more » « less
  3. Abstract Topological kagome magnets RMn6Sn6(R = rare earth element) attract numerous interests due to their non-trivial band topology and room-temperature magnetism. Here, we report a high entropy version of kagome magnet, (Gd0.38Tb0.27Dy0.20Ho0.15)Mn6Sn6. Such a high entropy material exhibits multiple spin reorientation transitions, which is not seen in all the related parent compounds and can be understood in terms of competing magnetic interactions enabled by high entropy. Furthermore, we also observed an intrinsic anomalous Hall effect, indicating that the high entropy phase preserves the non-trivial band topology. These results suggest that high entropy may provide a route to engineer the magnetic structure and expand the horizon of topological materials. 
    more » « less
  4. Heusler compounds and alloys based on them are of great recent interest because they exhibit a wide variety of spin structures, magnetic properties, and electron-transport phenomena. Their properties are tunable by alloying and we have investigated L21-orderd compound Ru2MnSn and its alloys by varying the atomic Mn:Sn composition. While antiferromagnetic ordering with a Néel temperature of 361 K was observed in Ru2MnSn, the Mn-poor Ru2Mn0.8Sn1.2 alloy exhibits properties of a diluted antiferromagnet in which there are localized regions of uncompensated Mn spins. Furthermore, a noncoplanar spin structure, evident from a topological Hall-effect contribution to the room-temperature Hall resistivity, is realized in Ru2Mn0.8Sn1.2. Our combined experimental and theoretical analysis shows that in the Ru2Mn0.8Sn1.2 alloy, the magnetic properties can be explained in terms of a noncoplanar antiferromagnetic scissor mode, which creates a small net magnetization in a magnetic field and subsequently yields a Berry curvature with a strong topological Hall effect. 
    more » « less
  5. Noncollinear antiferromagnet Mn3Sn has attracted wide interest as it is a candidate for Weyl semimetal. Here, we report the observation of topological Hall like signals in Mn3Sn/Pt bilayers grown on Al2O3(0001). X-ray diffraction and scanning transmission electron microscopy results confirm the high epitaxial quality of the c-axis-oriented Mn3Sn films. The detected topological Hall resistivity shows a broad temperature range from 210 to 365 K by tuning the thickness of Mn3Sn from 3 to 15 nm. Compared with previously reported topological Hall effects in Mn3Sn at temperatures below 50 K, the observed high-temperature topological Hall signal is likely due to the stabilization of topological spin textures enabled by the strong spin–orbit coupling of the Pt overlayer and the Dzyaloshinskii–Moriya interaction at the Mn3Sn/Pt interface. 
    more » « less