skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of the Critical Zone Structure on the Hydrology and Pool Patterning of Boreal Peatlands
Northern peatlands are unique ecosystems typically located in boreal latitudes that sustain unique habitats and species. They are a critical component of the global carbon cycle, acting both as a carbon reservoir (via peat accumulation after sequestration of carbon dioxide from the atmosphere) and as a carbon source to the atmosphere (by releasing methane and carbon dioxide, two greenhouse gases produced by microbes that thrive in the conditions found in peatlands). Although the ecology of peatlands has been well studied for many decades, the geological controls on peatland development and groundwater flow patterns are not completely understood. In Maine (USA), peatlands began forming about 10,000 years ago following the retreat of the ice sheets at the end of the last ice age. They formed in depressions, often starting as lakes or wetlands, within the landscape carved by glaciers and draped with sediments. Almost two decades of research in several peatlands in Maine suggest that glacial landforms buried beneath peatlands may play a key role in regulating both the hydrology (including the presence of open water pools at the surface) and release of methane gasses from peatlands. Subsurface images using an array of hydrogeophysical methods (including ground-penetrating radar, GPR) constrained with direct coring has revealed the presence of buried esker complexes beneath (or close to) surface pools. Hydrological measurements further suggest that the presence of these permeable esker deposits (mainly gravel and sand) may enhance the connection of peatland water to underlying groundwater and help sustain these pools. Whereas geological maps show that the presence of esker systems in Maine are widespread, satellite-derived digital elevation models (DEMs) reveal that they are often proximal to peatland boundaries, further suggesting that they may commonly extend below the peat formation and control hydrology and carbon dynamics in more peatlands than previously thought. Better understanding of how the critical zone influences coupled water and carbon cycling in northern peatlands may improve the understanding of their contribution to radiative forcing of climate as the climate warms.  more » « less
Award ID(s):
2051907
PAR ID:
10336031
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
FastTIMES
Volume:
26
Issue:
3
ISSN:
1943-6505
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Freshwater pools commonly form eccentric crescent patterns in peatlands, an important atmospheric methane (CH4) source, and show an apparent spatial association with eskers in some deglaciated regions. However, the role of underlying permeable glacial deposits such as eskers in regulating hydrogeology, and perhaps even carbon cycling, in peatlands is rarely considered. In this study, ground-penetrating radar imaging and direct coring confirmed that clustered pools coincide with buried esker crests in contact with peat soil in Caribou Bog and Kanokolus Bog in Maine (USA). Hydraulic head and geochemical data combined with lidar indicate vertical water flow from shallow peat toward the permeable esker crests, suggesting enhanced downward transport of labile organic carbon that presumably accelerates rates of methanogenesis in deep peat. Eskers might therefore serve as proxies for enhanced CH4 production in deep peat, as supported by differences in dissolved CH4 profiles depending on proximity to pools. Geographic data compiled from multiple sources suggest that many peatlands with eccentric pools appear to be located proximal to esker systems in Maine and Fennoscandia. These geological factors may be important, previously unrecognized controls on water and the carbon cycle in peatlands. 
    more » « less
  2. Groundwater seepage from underlying permeable glacial sedimentary structures, such as eskers, has been hypothesized to directly feed pools in northern peat bogs. These hypotheses directly contradict classical peat bog models for ombrogenous systems, wherein meteoric water is the sole water input to these systems. Variations in the underlying mineral sediment in contact with the peat imply that unrecognized hydrogeologic connectivity may exist with pools in northern peat bogs, particularly where high permeability materials are in contact with the peat. Seepage dynamics originating from these structural variations were investigated using a suite of thermal and hydrogeophysical methods deployed around pools in a peat bog of northeastern Maine, USA. Thermal characterization methods mapped anomalies that were confirmed as matrix seepage or preferential flow pathways (PFPs). Geochemical methods were employed at identified thermal anomalies to confirm upwelling of solute-rich groundwater. Conduits around pools were associated with surficial terminations of suspected peat pipes, based on the inference of pathways extending down into the peat, that focus flow through PFPs in the peat matrix. Discharge also occurred through the peat matrix adjacent to suspected pipe structures and matrix seepage rates were quantified using analysis of diurnal temperature signals recorded at multiple depths. Seepage rates, with a maximum of nearly 0.4 m/d, were measured at localized points around pools. Periods of synchronized temperatures paired with highly muted diurnal temperature signals, recorded in diurnal temperature with depth data, were interpreted qualitatively as activation of strong upward discharge rates through suspected peat pipes. These time periods correlated strongly with local precipitation events around the peatland. Ground-penetrating radar surveys revealed discontinuities in the low permeability glacio-marine clay at the mineral sediment-peat interface, interpreted to be regional glacial esker deposits, which were located beneath and around pools. Heat tracing, specific conductance contrasts, seepage rates, and trace metal concentrations all imply groundwater seepage originating from underlying permeable glacial esker deposits and directly sourcing pools. Preferential groundwater inputs into northern peat bogs may play a key role in developing and maintaining pool systems, with enhanced solute transport impacting peatland ecology, water resources, and carbon cycling. 
    more » « less
  3. Sphagnum-dominated peatlands store more carbon than all of Earth’s forests, playing a large role in the balance of carbon dioxide. However, these carbon sinks face an uncertain future as the changing climate is likely to cause water stress, potentially reducing Sphagnum productivity and transitioning peatlands to carbon sources. A mesocosm experiment was performed on thirty-two peat cores collected from two peatland landforms: elevated mounds (hummocks) and lower, flat areas of the peatland (hollows). Both rainfall treatments and water tables were manipulated, and CO2 fluxes were measured. Other studies have observed peat subsiding and tracking the water table downward when experiencing water stress, thought to be a self-preservation technique termed ‘Mire-breathing’. However, we found that hummocks tended to compress inwards, rather than subsiding towards the lowered water table as significantly as hollows. Lower peat height was linearly associated with reduced gross primary production (GPP) in response to lowered water tables, indicating that peat subsidence did not significantly enhance the resistance of GPP to drought. Conversely, Sphagnum peat compression was found to stabilize GPP, indicating that this mechanism of resilience to drought may transmit across the landscape depending on which Sphagnum landform types are dominant. This study draws direct connections between Sphagnum traits and peatland hydrology and carbon cycling. 
    more » « less
  4. Northern peatlands have accumulated large stocks of organic carbon (C) and nitrogen (N), but their spatial distribution and vulnerability to climate warming remain uncertain. Here, we used machine-learning techniques with extensive peat core data ( n > 7,000) to create observation-based maps of northern peatland C and N stocks, and to assess their response to warming and permafrost thaw. We estimate that northern peatlands cover 3.7 ± 0.5 million km 2 and store 415 ± 150 Pg C and 10 ± 7 Pg N. Nearly half of the peatland area and peat C stocks are permafrost affected. Using modeled global warming stabilization scenarios (from 1.5 to 6 °C warming), we project that the current sink of atmospheric C (0.10 ± 0.02 Pg C⋅y −1 ) in northern peatlands will shift to a C source as 0.8 to 1.9 million km 2 of permafrost-affected peatlands thaw. The projected thaw would cause peatland greenhouse gas emissions equal to ∼1% of anthropogenic radiative forcing in this century. The main forcing is from methane emissions (0.7 to 3 Pg cumulative CH 4 -C) with smaller carbon dioxide forcing (1 to 2 Pg CO 2 -C) and minor nitrous oxide losses. We project that initial CO 2 -C losses reverse after ∼200 y, as warming strengthens peatland C-sinks. We project substantial, but highly uncertain, additional losses of peat into fluvial systems of 10 to 30 Pg C and 0.4 to 0.9 Pg N. The combined gaseous and fluvial peatland C loss estimated here adds 30 to 50% onto previous estimates of permafrost-thaw C losses, with southern permafrost regions being the most vulnerable. 
    more » « less
  5. Abstract Peatlands cover many low‐lying areas in the tropics. Tropical peatlands are intriguing systems because of their tight coupling between hydrology and carbon storage: They accumulate carbon over thousands of years because of waterlogging, and they remain waterlogged after growing into domed shapes because peat restricts drainage. This feedback between waterlogging and landscape morphology generates landforms with special hydrologic properties that enable simplifications of standard watershed models. In natural tropical peatlands, the water table is always near the surface and infiltration is almost immediate. In addition, water table fluctuations relative to the peat surface are remarkably uniform across tropical peatlands because these peatlands acquire shapes with a uniform topographic wetness index. In this paper, we show that because of these distinctive properties, simple hydrologic models that represent the hydraulic state of a catchment by a scalar quantity that describes total water storage are useful and physically meaningful in tropical peatlands. We demonstrate how to efficiently derive hillslope‐scale parameterizations of transmissivity and specific yield as functions of water table height for a tropical peatland from water table, rainfall, and topographic data. Our findings suggest that natural tropical peatland subcatchments could be usefully modeled as single hydrologic response units for river flow and flood forecasting. 
    more » « less