skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Key Knowledge Gaps to Fill at the Cell-To-Ecosystem Level in Marine B-Vitamin Cycling
B-vitamins are essential micronutrients for marine plankton. Additionally, we now know many marine plankton cannot synthesize B-vitamins de novo (from scratch) and thus are reliant on external supplies. Details of B-vitamin exchange, whether ‘active’ or ‘passive’ (i.e. through cell secretion or mortality), are lacking and as a result we struggle to predict microbial physiology, community composition and biogeochemistry. We argue that significant advances in understanding of the impact of B-vitamin exchange and cycling on marine community structure and biogeochemistry can be made by focusing on unknowns related to the ‘in’s and out’s’ of B-vitamin transport, exchange between plankton, and ecosystem scale processing/transformation of B-vitamins. We point out that it is particularly necessary to reach beyond traditional categorization of populations as B-vitamin auxotrophs (requiring supplied vitamin) or prototrophs ( de novo vitamin synthesizers) and begin addressing which populations are net ‘providers’ and/or ‘consumers’. This is a particularly interesting problem as organisms cannot be confidently categorized as net ‘providers’ and/or ‘consumers’ based on genome-based prediction, and it is possible the two roles may change over time and environmental conditions. We posit that greater knowledge of B-vitamin exchange, e.g. cross-feeding, acquisition and secretion systems, environmental triggers of ‘provision’ and ‘consumption’, will reveal unforeseen networking and novel niches across marine planktonic communities. Last, we advocate for further experiments tracking the responses of isolates or natural communities relative to vitamin availability, tracing flow of B-vitamins between cells using novel approaches (e.g. isotopic, fluorometric), and greater consideration of altered B-vitamin exchange and cycling under future climate scenarios.  more » « less
Award ID(s):
2049388
PAR ID:
10336039
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microbial chemoautotroph-heterotroph interactions may play a pivotal role in the cycling of carbon in the deep ocean, reminiscent of phytoplankton-heterotroph associations in surface waters. Nitrifiers are the most abundant chemoautotrophs in the global ocean, yet very little is known about nitrifier metabolite production, release, and transfer to heterotrophic microbial communities. To elucidate which organic compounds are released by nitrifiers and potentially available to heterotrophs, we characterized the exo- and endometabolomes of the ammonia-oxidizing archaeon Nitrosopumilus adriaticus CCS1 and the nitrite-oxidizing bacterium Nitrospina gracilis Nb-211. Nitrifier endometabolome composition was not a good predictor of exometabolite availability, indicating that metabolites were predominately released by mechanisms other than cell death/lysis. Although both nitrifiers released labile organic compounds, N. adriaticus preferentially released amino acids, particularly glycine, suggesting that its cell membranes might be more permeable to small, hydrophobic amino acids. We further initiated co-culture systems between each nitrifier and a heterotrophic alphaproteobacterium, and compared exometabolite and transcript patterns of nitrifiers grown axenically to those in co-culture. In particular, B vitamins exhibited dynamic production and consumption patterns in nitrifier-heterotroph co-cultures. We observed an increased production of vitamin B2 and the vitamin B12 lower ligand dimethylbenzimidazole by N. adriaticus and N. gracilis, respectively. In contrast, the heterotroph likely produced vitamin B5 in co-culture with both nitrifiers and consumed the vitamin B7 precursor dethiobiotin when grown with N. gracilis. Our results indicate that B vitamins and their precursors could play a particularly important role in governing specific metabolic interactions between nitrifiers and heterotrophic microbes in the ocean. 
    more » « less
  2. Abstract Vitamin B1 (thiamin, B1) is an essential micronutrient for cells, yet intriguingly in aquatic systems most bacterioplankton are unable to synthesize it de novo (auxotrophy), requiring an exogenous source. Cycling of this valuable metabolite in aquatic systems has not been fully investigated and vitamers (B1-related compounds) have only begun to be measured and incorporated into the B1 cycle. Here, we identify potential key producers and consumers of B1 and gain new insights into the dynamics of B1 cycling through measurements of B1 and vitamers (HMP: 4-amino-5-hydroxymethyl-2-methylpyrimidine, HET: 4-methyl-5-thiazoleethanol, FAMP: N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine) in the particulate and dissolved pool in a temperate coastal system. Dissolved B1 was not the primary limiting nutrient for bacterial production and was relatively stable across seasons with concentrations ranging from 74–117 pM, indicating a balance of supply and demand. However, vitamer concentration changed markedly with season as did transcripts related to vitamer salvage and transport suggesting use of vitamers by certain bacterioplankton, e.g. Pelagibacterales. Genomic and transcriptomic analyses showed that up to 78% of the bacterioplankton taxa were B1 auxotrophs. Notably, de novo B1 production was restricted to a few abundant bacterioplankton (e.g. Vulcanococcus, BACL14 (Burkholderiales), Verrucomicrobiales) across seasons. In summer, abundant picocyanobacteria were important putative B1 sources, based on transcriptional activity, leading to an increase in the B1 pool. Our results provide a new dynamic view of the players and processes involved in B1 cycling over time in coastal waters, and identify specific priority populations and processes for future study. 
    more » « less
  3. null (Ed.)
    Vitamin B1 (thiamin) is an essential coenzyme for all cells. Recent findings from experimental cell biology and genome surveys have shown that thiamin cycling by plankton is far more complex than was previously understood. Many plankton cells cannot produce thiamin (are auxotrophic) and obligately require an exogenous source of thiamin or one or more of 5 different thiamin-related compounds (TRCs). Despite this emerging evidence for the evolution among plankton of complex interactions related to thiamin, the influence of TRCs on plankton community structure and productivity are not understood. We report measurements of three dissolved TRCs 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP), 5-(2-hydroxyethyl)-4-methyl-1,3-thiazole-2-carboxylic acid (cHET), and 4-methyl-5-thiazoleethanol (HET) that have never before been assayed in seawater. Here we characterize them alongside other TRCs that were measured previously [thiamin and 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP)], in depth profiles from a latitudinal transect in the north Atlantic in March 2018. TRC concentrations ranged from femptomolar to picomolar. Surface depletion relative to a maximum near the bottom of the euphotic zone and low concentrations at deeper depths were consistent features. Our observations suggest that when bacterial abundance and production are low, TRC concentrations approach a steady state where TRC production and consumption terms are balanced. Standing stocks of TRCs also appear to be positively correlated with bacterial production. However, near the period of peak biomass in the accumulation phase of a bloom we observed an inverse relationship between TRCs and bacterial production, coincident with an increased abundance of Flavobacteria that comparative genomics indicates could be vitamin B1 auxotrophs. While these observations suggest that the dissolved pool of TRCs is often at steady state, with TRC production and consumption balanced, our data suggests that bloom induced shifts in microbial community structure and activity may cause a decoupling between TRC production and consumption, leading to increased abundances of some populations of bacteria that are putatively vitamin B1 auxotrophs. 
    more » « less
  4. Giovannoni, Stephen J (Ed.)
    ABSTRACT Vitamin B1 (thiamin) is a vital nutrient for most cells in nature, including marine plankton. Early and recent experiments show that B1 degradation products instead of B1 can support the growth of marine bacterioplankton and phytoplankton. However, the use and occurrence of some degradation products remains uninvestigated, namely N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), which has been a focus of plant oxidative stress research. We investigated the relevance of FAMP in the ocean. Experiments and global ocean meta-omic data indicate that eukaryotic phytoplankton, including picoeukaryotes and harmful algal bloom species, use FAMP while bacterioplankton appear more likely to use deformylated FAMP, 4-amino-5-aminomethyl-2-methylpyrimidine. Measurements of FAMP in seawater and biomass revealed that it occurs at picomolar concentrations in the surface ocean, heterotrophic bacterial cultures produce FAMP in the dark—indicating non-photodegradation of B1 by cells, and B1-requiring (auxotrophic) picoeukaryotic phytoplankton produce intracellular FAMP. Our results require an expansion of thinking about vitamin degradation in the sea, but also the marine B1 cycle where it is now crucial to consider a new B1-related compound pool (FAMP), as well as generation (dark degradation—likely via oxidation), turnover (plankton uptake), and exchange of the compound within the networks of plankton. IMPORTANCEResults of this collaborative study newly show that a vitamin B1 degradation product, N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), can be used by diverse marine microbes (bacteria and phytoplankton) to meet their vitamin B1 demands instead of B1 and that FAMP occurs in the surface ocean. FAMP has not yet been accounted for in the ocean and its use likely enables cells to avoid B1 growth deficiency. Additionally, we show FAMP is formed in and out of cells without solar irradiance—a commonly considered route of vitamin degradation in the sea and nature. Altogether, the results expand thinking about oceanic vitamin degradation, but also the marine B1 cycle where it is now crucial to consider a new B1-related compound pool (FAMP), as well as its generation (dark degradation—likely via oxidation), turnover (plankton uptake), and exchange within networks of plankton. 
    more » « less
  5. Abstract Mosquitoes shift from detritus-feeding larvae to blood-feeding adults that can vector pathogens to humans and other vertebrates. The sugar and blood meals adults consume are rich in carbohydrates and protein but are deficient in other nutrients including B vitamins. Facultatively hematophagous insects like mosquitoes have been hypothesized to avoid B vitamin deficiencies by carryover of resources from the larval stage. However, prior experimental studies have also used adults with a gut microbiota that could provision B vitamins. Here, we usedAedes aegypti, which is the primary vector of dengue virus (DENV), to ask if carryover effects enable normal function in adults with no microbiota. We show that adults with no gut microbiota produce fewer eggs, live longer with lower metabolic rates, and exhibit reduced DENV vector competence but are rescued by provisioning B vitamins or recolonizing the gut with B vitamin autotrophs. We conclude carryover effects do not enable normal function. 
    more » « less