Abstract Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria ( Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton.
more »
« less
Metabolite release by nitrifiers facilitates metabolic interactions in the ocean
Abstract Microbial chemoautotroph-heterotroph interactions may play a pivotal role in the cycling of carbon in the deep ocean, reminiscent of phytoplankton-heterotroph associations in surface waters. Nitrifiers are the most abundant chemoautotrophs in the global ocean, yet very little is known about nitrifier metabolite production, release, and transfer to heterotrophic microbial communities. To elucidate which organic compounds are released by nitrifiers and potentially available to heterotrophs, we characterized the exo- and endometabolomes of the ammonia-oxidizing archaeon Nitrosopumilus adriaticus CCS1 and the nitrite-oxidizing bacterium Nitrospina gracilis Nb-211. Nitrifier endometabolome composition was not a good predictor of exometabolite availability, indicating that metabolites were predominately released by mechanisms other than cell death/lysis. Although both nitrifiers released labile organic compounds, N. adriaticus preferentially released amino acids, particularly glycine, suggesting that its cell membranes might be more permeable to small, hydrophobic amino acids. We further initiated co-culture systems between each nitrifier and a heterotrophic alphaproteobacterium, and compared exometabolite and transcript patterns of nitrifiers grown axenically to those in co-culture. In particular, B vitamins exhibited dynamic production and consumption patterns in nitrifier-heterotroph co-cultures. We observed an increased production of vitamin B2 and the vitamin B12 lower ligand dimethylbenzimidazole by N. adriaticus and N. gracilis, respectively. In contrast, the heterotroph likely produced vitamin B5 in co-culture with both nitrifiers and consumed the vitamin B7 precursor dethiobiotin when grown with N. gracilis. Our results indicate that B vitamins and their precursors could play a particularly important role in governing specific metabolic interactions between nitrifiers and heterotrophic microbes in the ocean.
more »
« less
- Award ID(s):
- 1924512
- PAR ID:
- 10568778
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The ISME Journal
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1751-7362
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The communities of bacteria that assemble around marine microphytoplankton are predictably dominated by Rhodobacterales, Flavobacteriales, and families within the Gammaproteobacteria. Yet whether this consistent ecological pattern reflects the result of resource-based niche partitioning or resource competition requires better knowledge of the metabolites linking microbial autotrophs and heterotrophs in the surface ocean. We characterized molecules targeted for uptake by three heterotrophic bacteria individually co-cultured with a marine diatom using two strategies that vetted the exometabolite pool for biological relevance by means of bacterial activity assays: expression of diagnostic genes and net drawdown of exometabolites, the latter detected with mass spectrometry and nuclear magnetic resonance using novel sample preparation approaches. Of the more than 36 organic molecules with evidence of bacterial uptake, 53% contained nitrogen (including nucleosides and amino acids), 11% were organic sulfur compounds (including dihydroxypropanesulfonate and dimethysulfoniopropionate), and 28% were components of polysaccharides (including chrysolaminarin, chitin, and alginate). Overlap in phytoplankton-derived metabolite use by bacteria in the absence of competition was low, and only guanosine, proline, and N-acetyl-d-glucosamine were predicted to be used by all three. Exometabolite uptake pattern points to a key role for ecological resource partitioning in the assembly marine bacterial communities transforming recent photosynthate.more » « less
-
Abstract Engineered cyanobacteriumSynechococcus elongatuscan use light and CO2to produce sucrose, making it a promising candidate for use in co-cultures with heterotrophic workhorses. However, this process is challenged by the mutual stresses generated from the multispecies microbial culture. Here we demonstrate an ecosystem whereS. elongatusis freely grown in a photo-bioreactor (PBR) containing an engineered heterotrophic workhorse (either β-carotene-producingYarrowia lipolytica or indigoidine-producingPseudomonas putida) encapsulated in calcium-alginate hydrogel beads. The encapsulation prevents growth interference, allowing the cyanobacterial culture to produce high sucrose concentrations enabling the production of indigoidine and β-carotene in the heterotroph. Our experimental PBRs yielded an indigoidine titer of 7.5 g/L hydrogel and a β-carotene titer of 1.3 g/L hydrogel, amounts 15–22-fold higher than in a comparable co-culture without encapsulation. Moreover,13C-metabolite analysis and protein overexpression tests indicated that the hydrogel beads provided a favorable microenvironment where the cell metabolism inside the hydrogel was comparable to that in a free culture. Finally, the heterotroph-containing hydrogels were easily harvested and dissolved by EDTA for product recovery, while the cyanobacterial culture itself could be reused for the next batch of immobilized heterotrophs. This co-cultivation and hydrogel encapsulation system is a successful demonstration of bioprocess optimization under photobioreactor conditions.more » « less
-
Abstract Prochlorococcus is found throughout the euphotic zone in the oligotrophic open ocean. Deep mixing and sinking while attached to particles can, however, transport Prochlorococcus cells below this sunlit zone, depriving them of light for extended periods of time. Previous work has shown that Prochlorococcus by itself cannot survive extended periods of darkness. However, when co-cultured with a heterotrophic microbe and subjected to repeated periods of extended darkness, Prochlorococcus cells develop an epigenetically inherited dark-tolerant phenotype that can survive longer periods of darkness. Here we examine the metabolic and physiological changes underlying this adaptation using co-cultures of dark-tolerant and parental strains of Prochlorococcus, each grown with the heterotroph Alteromonas under diel light:dark conditions. The relative abundance of Alteromonas was higher in dark-tolerant than parental co-cultures, while dark-tolerant Prochlorococcus cells were larger, contained less chlorophyll, and were less synchronized to the light:dark cycle. Meta-transcriptome analysis revealed that dark-tolerant co-cultures undergo a joint change, in which Prochlorococcus undergoes a relative shift from photosynthesis to respiration, while Alteromonas shifts toward using more organic acids instead of sugars. Furthermore, the transcriptome data suggested enhanced biosynthesis of amino acids and purines in dark-tolerant Prochlorococcus and enhanced degradation of these compounds in Alteromonas. Collectively, our results demonstrate that dark adaptation involves a strengthening of the metabolic coupling between Prochlorococcus and Alteromonas, presumably mediated by an enhanced, and compositionally modified, carbon exchange between the two species.more » « less
-
Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S(0)), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum , a low-light adapted photoautolithotrophic sulfur oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S(0) > thiosulfate. To understand this preference in the context of light energy availability, an ‘energy landscape’ of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of Cba. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for Cba. tepidum as well as other organisms. Cba. tepidum ’s bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that Cba. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times. IMPORTANCE: How microbes cope with and adapt to varying energy availability is an important factor in understanding microbial ecology and in designing efficient biotechnological processes. We explored the response of a model phototrophic organism, Chlorobaculum tepidum , across a factorial experimental design that enabled simultaneous variation and analysis of multiple growth conditions, what we term the ‘energy landscape’. Cba. tepidum biomass composition shifted toward less energetically expensive amino acids at low light. This observation provides experimental evidence for evolved efficiencies in microbial proteomes and emphasizes the role that energy flux may play in the adaptive responses of organisms. From a practical standpoint, our data suggest that bulk biomass amino acid composition could provide a simple proxy to monitor and identify energy stress in microbial systems.more » « less
An official website of the United States government

