skip to main content

This content will become publicly available on July 1, 2023

Title: Transcriptomic Evidence That Switching from Tobacco to Electronic Cigarettes Does Not Reverse Damage to the Respiratory Epithelium
The health benefits of switching from tobacco to electronic cigarettes (ECs) are neither confirmed nor well characterized. To address this problem, we used RNA-seq analysis to compare the nasal epithelium transcriptome from the following groups (n = 3 for each group): (1) former smokers who completely switched to second generation ECs for at least 6 months, (2) current tobacco cigarette smokers (CS), and (3) non-smokers (NS). Group three included one former cigarette smoker. The nasal epithelial biopsies from the EC users vs. NS had a higher number of differentially expressed genes (DEGs) than biopsies from the CS vs. NS and CS vs. EC sets (1817 DEGs total for the EC vs. NS, 407 DEGs for the CS vs. NS, and 116 DEGs for the CS vs. EC comparison). In the EC vs. NS comparison, enriched gene ontology terms for the downregulated DEGs included cilium assembly and organization, whereas gene ontologies for upregulated DEGs included immune response, keratinization, and NADPH oxidase. Similarly, ontologies for cilium movement were enriched in the downregulated DEGs for the CS vs. NS group. Reactome pathway analysis gave similar results and also identified keratinization and cornified envelope in the upregulated DEGs in the EC vs. NS comparison. more » In the CS vs. NS comparison, the enriched Reactome pathways for upregulated DEGs included biological oxidations and several metabolic processes. Regulator effects identified for the EC vs. NS comparison were inflammatory response, cell movement of phagocytes and degranulation of phagocytes. Disease Ontology Sematic Enrichment analysis identified lung disease, mouth disease, periodontal disease and pulmonary fibrosis in the EC vs. NS comparison. Squamous metaplasia associated markers, keratin 10, keratin 13 and involucrin, were increased in the EC vs. NS comparison. Our transcriptomic analysis showed that gene expression profiles associated with EC use are not equivalent to those from non-smokers. EC use may interfere with airway epithelium recovery by promoting increased oxidative stress, inhibition of ciliogenesis, and maintaining an inflammatory response. These transcriptomic alterations may contribute to the progression of diseases with chronic EC use. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Lung cancer is the second most common cancer in the world. The aim of this study is to identify biomarkers for lung cancer that can aid in its diagnosis and treatment. The gene expression profiles from GEO database were analyzed by GEO2R to identify Differentially Expressed Genes (DEGs) and further analyzed using Cytoscape. The data was divided into two categories: non-treatment and treatment groups. A total of 407 DEGs (254 upregulated and 153 downregulated) and 259 DEGs (124 upregulated and 135 downregulated) were isolated for non-treatment and treatment studies respectively. The significant Gene Ontologies and pathways enriched with DEGS were identified using Cytoscape apps, BiNGO and ReactomeFIPlugIn, respectively. Hub genes based on network parameters - Degree, Closeness and Betweenness - were isolated using CytoHubba. In conclusion, DEGs identified in this study may play an important role in early diagnosis or as biomarkers of lung cancer.
  2. Use of electronic cigarettes is rapidly increasing among youth and young adults, but little is known regarding the long-term cardiopulmonary health impacts of these nicotine-containing devices. Our group has previously demonstrated that chronic, inhaled nicotine induces pulmonary hypertension (PH) and right ventricular (RV) remodeling in mice. These changes were associated with upregulated RV angiotensin-converting enzyme (ACE). Angiotensin II receptor blockers (ARBs) have been shown to reverse cigarette smoking-induced PH in rats. ACE inhibitor and ARB use in a large retrospective cohort of patients with PH is associated with improved survival. Here, we utilized losartan (an ARB specific for angiotensin II type 1 receptor) to further explore nicotine-induced PH. Male C57BL/6 mice received nicotine vapor for 12 h/day, and exposure was assessed using serum cotinine to achieve levels comparable to human smokers or electronic cigarette users. Mice were exposed to nicotine for 8 wk and a subset was treated with losartan via an osmotic minipump. Cardiac function was assessed using echocardiography and catheterization. Although nicotine exposure increased angiotensin II in the RV and lung, this finding was nonsignificant. Chronic, inhaled nicotine significantly increased RV systolic pressure and RV free wall thickness versus air control. These parameters were significantly lower in mice receiving bothmore »nicotine and losartan. Nicotine significantly increased RV internal diameter, with no differences seen between the nicotine and nicotine-losartan group. Neither nicotine nor losartan affected left ventricular structure or function. These findings provide the first evidence that antagonism of the angiotensin II type 1 receptor can ameliorate chronic, inhaled nicotine-induced PH and RV remodeling. NEW & NOTEWORTHY Chronic, inhaled nicotine causes pulmonary hypertension and right ventricular remodeling in mice. Treatment with losartan, an angiotensin II type 1 receptor antagonist, ameliorates nicotine-induced pulmonary hypertension and right ventricular remodeling. This novel finding provides preclinical evidence for the use of renin-angiotensin system-based therapies in the treatment of pulmonary hypertension, particularly in patients with a history of tobacco-product use.« less
  3. Selenium (Se) is an essential micronutrient for growth and immune function in beef cattle. We previously showed that supranutritional maternal organic Se supplementation during late pregnancy improves immune function in their newborn calves; however, the effects of maternal organic Se-supplementation on fetal programming during different pregnancy stages have yet to be elucidated. Herein, we investigated the effects of supranutritional maternal organic Se-supplementation in different pregnancy trimesters on their beef calf’s genome-wide transcriptome profiles. Within 12 to 48 h of birth, whole blood and Longissimus dorsi (LD) muscle biopsies were collected from calves born to 40 crossbred Angus cows that received, except for the control group (CTR), Se-yeast boluses (105 mg of Se/wk) during the first (TR1), second (TR2), or third (TR3) trimester of gestation. Whole-blood Se concentrations of newborn calves increased from CTR, TR1, TR2 to TR3, whereas muscle Se concentrations of newborn calves were only increased in TR3 group. We identified 3048 unique differentially expressed genes (DEGs) across all group comparisons (FDR ≤ 0.05 and |log2FC| ≥ 1.5). Furthermore, we predicted 237 unique transcription factors that putatively regulate the DEGs. Independent of supplementation trimester, supranutritional maternal organic Se supplementation downregulated genes involved in adaptive immunity in all trimesters. Dependentmore »on supplementation trimester, genes involved in muscle development were upregulated by TR3 Se supplementation and downregulated by TR1 Se-supplementation, and genes involved in collagen formation were downregulated by TR2 Se-supplementation. Supranutritional maternal organic Se supplementation in the last trimester of pregnancy resulted in upregulation of myosin and actin filament associated genes, potentially allowing for optimal muscle function and contraction. Our findings suggest a beneficial effect of supranutritional maternal organic Se supplementation during late gestation on Se-status and muscle development and function of newborn calves.« less
  4. Matrix metalloproteinase-12 ( Mmp12 ) is upregulated by cigarette smoke (CS) and plays a critical role in extracellular matrix remodeling, a key mechanism involved in physiological repair processes, and in the pathogenesis of emphysema, asthma, and lung cancer. While cigarette smoking is associated with the development of chronic obstructive pulmonary diseases (COPD) and lung cancer, in utero exposures to CS and second-hand smoke (SHS) are associated with asthma development in the offspring. SHS is an indoor air pollutant that causes known adverse health effects; however, the mechanisms by which in utero SHS exposures predispose to adult lung diseases, including COPD, asthma, and lung cancer, are poorly understood. In this study, we tested the hypothesis that in utero SHS exposure aggravates adult-induced emphysema, asthma, and lung cancer. Methods: Pregnant BALB/c mice were exposed from gestational days 6–19 to either 3 or 10mg/m 3 of SHS or filtered air. At 10, 11, 16, or 17weeks of age, female offspring were treated with either saline for controls, elastase to induce emphysema, house-dust mite (HDM) to initiate asthma, or urethane to promote lung cancer. At sacrifice, specific disease-related lung responses including lung function, inflammation, gene, and protein expression were assessed. Results: In the elastase-inducedmore »emphysema model, in utero SHS-exposed mice had significantly enlarged airspaces and up-regulated expression of Mmp12 (10.3-fold compared to air-elastase controls). In the HDM-induced asthma model, in utero exposures to SHS produced eosinophilic lung inflammation and potentiated Mmp12 gene expression (5.7-fold compared to air-HDM controls). In the lung cancer model, in utero exposures to SHS significantly increased the number of intrapulmonary metastases at 58weeks of age and up-regulated Mmp12 (9.3-fold compared to air-urethane controls). In all lung disease models, Mmp12 upregulation was supported at the protein level. Conclusion: Our findings revealed that in utero SHS exposures exacerbate lung responses to adult-induced emphysema, asthma, and lung cancer. Our data show that MMP12 is up-regulated at the gene and protein levels in three distinct adult lung disease models following in utero SHS exposures, suggesting that MMP12 is central to in utero SHS-aggravated lung responses.« less
  5. Abstract Background

    Crohn’s disease is a lifelong disease characterized by chronic inflammation of the gastrointestinal tract. Defining the cellular and transcriptional composition of the mucosa at different stages of disease progression is needed for personalized therapy in Crohn’s.


    Ileal biopsies were obtained from (1) control subjects (n = 6), (2) treatment-naïve patients (n = 7), and (3) established (n = 14) Crohn’s patients along with remission (n = 3) and refractory (n = 11) treatment groups. The biopsies processed using 10x Genomics single cell 5' yielded 139 906 cells. Gene expression count matrices of all samples were analyzed by reciprocal principal component integration, followed by clustering analysis. Manual annotations of the clusters were performed using canonical gene markers. Cell type proportions, differential expression analysis, and gene ontology enrichment were carried out for each cell type.


    We identified 3 cellular compartments with 9 epithelial, 1 stromal, and 5 immune cell subtypes. We observed differences in the cellular composition between control, treatment-naïve, and established groups, with the significant changes in the epithelial subtypes of the treatment-naïve patients, including microfold, tuft, goblet, enterocyte,s and BEST4+ cells. Surprisingly, fewer changes in the composition of the immune compartment were observed; however, gene expression in the epithelial and immune compartment was different between Crohn’s phenotypes, indicating changes inmore »cellular activity.


    Our study identified cellular and transcriptional signatures associated with treatment-naïve Crohn’s disease that collectively point to dysfunction of the intestinal barrier with an increase in inflammatory cellular activity. Our analysis also highlights the heterogeneity among patients within the same disease phenotype, shining a new light on personalized treatment responses and strategies.

    « less