skip to main content


Title: Heterometallic [Cu–O–M] 2+ active sites for methane C–H activation in zeolites: stability, reactivity, formation mechanism and relationship to other active sites
The formation and reactivities of [Cu–O–M] 2+ species (M = Ti–Cu, Zr–Mo and Ru–Ag) in metal-exchanged zeolites, as well as stabilities of these species towards autoreduction by O 2 elimination are investigated with density functional theory. These species were investigated in zeolite mordenite in search of insights into active site formation mechanisms, the relationship between stability and reactivity as well as discovery of heterometallic species useful for isothermal methane-to-methanol conversion (MMC). Several [Cu–O–M] 2+ species (M = Ti–Cr and Zr–Mo) are substantially more stable than [Cu 2 O] 2+ . Other [Cu–O–M] 2+ species, (M = Mn–Ni and Ru–Ag) have similar formation energies to [Cu 2 O] 2+ , to within ±10 kcal mol −1 . Interestingly, only [Cu–O–Ag] 2+ is more active for methane activation than [Cu 2 O] 2+ . [Cu–O–Ag] 2+ is however more susceptible to O 2 elimination. By considering the formation energies, autoreduction, cost and activity towards the methane C–H bond, we can only conclude that [Cu 2 O] 2+ is best suited for MMC. Formation of [Cu 2 O] 2+ is initiated by proton transfer from aquo ligands to the framework and proceeds mostly via dehydration steps. Its μ-oxo bridge is formed via water-assisted condensation of two hydroxo groups. To evaluate the relationship between [Cu 2 O] 2+ and other active sites, we also examined the formation energies of other species. The formation energies follow the trend: isolated [Cu–OH] + < paired [Cu–OH] + < [Cu 2 O] 2+ < [Cu 3 O 3 ] 2+ . Inclusion of Gibbs free-energy corrections indicates activation temperatures of 257, 307 and 327 and 331 °C for isolated [Cu–OH] + , paired [Cu–OH] + , [Cu 2 O] 2+ and [Cu 3 O 3 ] 2+ , respectively. The provocative nature of the lower-than-expected activation temperature for isolated [Cu–OH] + species is discussed.  more » « less
Award ID(s):
1800387
NSF-PAR ID:
10336150
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
11
Issue:
16
ISSN:
2044-4753
Page Range / eLocation ID:
5671 to 5683
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Methane‐to‐methanol conversion (MMC) can be facilitated with high methanol selectivities by copper‐exchanged zeolites. There are however two open questions regarding the use of these zeolites to facilitate the MMC process. The first concerns the possibility of operating the three cycles in the stepwise MMC process by these zeolites in an isothermal fashion. The second concerns the possibility of improving the methanol yields by systematic substitution of some copper centers in these active sites with other earth‐abundant transition metals. Quantum‐mechanical computations can be used to compare methane activation by copper oxide species and analogous mixed‐metal systems. To carry out such screening, it is important that we use theoretical methods that are accurate and computationally affordable for describing the properties of the hetero‐metallic catalytic species. We have examined the performance of 47 exchange‐correlation density functionals for predicting the relative spin‐state energies and chemical reactivities of six hetero‐metallic [M‐O‐Cu]2+and [M‐O2‐Cu]2+, (where MCo, Fe, and Ni), species by comparison with coupled cluster theory including iterative single, double excitations as well as perturbative treatment of triple excitations, CCSD(T). We also performed multireference calculations on some of these systems. We considered two types of reactions (hydrogen addition and oxygen addition) that are relevant to MMC. We recommend the use of τ‐HCTH and OLYP to determine the spin‐state energy splittings in the hetero‐metallic motifs. ωB97, ωB97X, ωB97X‐D3, and MN15 performed best for predicting the energies of the hydrogen and oxygen addition reactions. In contrast, local, and semilocal functionals do poorly for chemical reactivity. Using [Fe‐O‐Cu]2+as a test, we see that the nonlocal functionals perform well for the methane CH activation barrier. In contrast, the semilocal functionals perform rather poorly. © 2018 Wiley Periodicals, Inc.

     
    more » « less
  2. Abstract

    Methane over‐oxidation by copper‐exchanged zeolites prevents realization of high‐yield catalytic conversion. However, there has been little description of the mechanism for methane over‐oxidation at the copper active sites of these zeolites. Using density functional theory (DFT) computations, we reported that tricopper [Cu3O3]2+active sites can over‐oxidize methane. However, the role of [Cu3O3]2+sites in methane‐to‐methanol conversion remains under debate. Here, we examine methane over‐oxidation by dicopper [Cu2O]2+and [Cu2O2]2+sites using DFT in zeolite mordenite (MOR). For [Cu2O2]2+, we considered the μ‐(η22) peroxo‐, and bis(μ‐oxo) motifs. These sites were considered in the eight‐membered (8MR) ring of MOR. μ‐(η22) peroxo sites are unstable relative to the bis(μ‐oxo) motif with a small interconversion barrier. Unlike [Cu2O]2+which is active for methane C−H activation, [Cu2O2]2+has a very large methane C−H activation barrier in the 8MR. Stabilization of methanol and methyl at unreacted dicopper sites however leads to over‐oxidation via sequential hydrogen atom abstraction steps. For methanol, these are initiated by abstraction of the CH3group, followed by OH and can proceed near 200 °C. Thus, for [Cu2O]2+and [Cu2O2]2+species, over‐oxidation is an inter‐site process. We discuss the implications of these findings for methanol selectivity, especially in comparison to the intra‐site process for [Cu3O3]2+sites and the role of Brønsted acid sites.

     
    more » « less
  3. Abstract

    Copper‐exchanged zeolites are useful for stepwise conversion of methane to methanol at moderate temperatures. This process also generates some over‐oxidation products like CO and CO2. However, mechanistic pathways for methane over‐oxidation by copper‐oxo active sites in these zeolites have not been previously described. Adequate understanding of methane over‐oxidation is useful for developing systems with higher methanol yields and selectivities. Here, we use density functional theory (DFT) to examine methane over‐oxidation by [Cu3O3]2+active sites in zeolite mordenite MOR. The methyl group formed after activation of a methane C−H bond can be stabilized at a μ‐oxo atom of the active site. This μ‐(O−CH3) intermediate can undergo sequential hydrogen atom abstractions till eventual formation of a copper‐monocarbonyl species. Adsorbed formaldehyde, water and formates are also formed during this process. The overall mechanistic path is exothermic, and all intermediate steps are facile at 200 °C. Release of CO from the copper‐monocarbonyl costs only 3.4 kcal/mol. Thus, for high methanol selectivities, the methyl group from the first hydrogen atom abstraction stepmust bestabilizedawayfrom copper‐oxo active sites. Indeed, it must be quickly trapped at an unreactive site (short diffusion lengths) while avoiding copper‐oxo species (large paths between active sites). This stabilization of the methyl group away from the active sites is central to the high methanol selectivities obtained with stepwise methane‐to‐methanol conversion.

     
    more » « less
  4. null (Ed.)
    One-pot reaction of tris(2-aminoethyl)amine (TREN), [Cu I (MeCN) 4 ]PF 6 , and paraformaldehyde affords a mixed-valent [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu 3 (μ 3 -OH)] 3+ core. The fourth TREN caps on top of the tricopper cluster to form a cryptand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [ TREN4 Cu II Cu I Cu I (μ 3 -OH)](PF 6 ) 3 and its solvent-exposed analog [ TREN3 Cu II Cu II Cu II (μ 3 -O)](PF 6 ) 4 suggest that isolation of tricopper core in a cryptand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [ TREN4 Cu I Cu I Cu I (μ 3 -OH)](PF 6 ) 2 can reduce O 2 under acidic conditions. The geometric constraints provided by the cryptand are reminiscent of Nature's multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at Cu I Cu I Cu I ( 4a ), Cu II Cu I Cu I ( 4b ), and Cu II Cu II Cu I ( 4c ) states, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (10 5 to 10 6 M −1 s −1 ) were observed for both Cu I Cu I Cu I /Cu II Cu I Cu I and Cu II Cu I Cu I /Cu II Cu II Cu I redox couples, approaching the rapid electron transfer rates of copper sites in MCO. 
    more » « less
  5. Metal phosphides are promising catalysts for hydrocarbon transformations, but computational screening is complicated by their diverse structures and compositions. To disentangle structural from compositional contributions, here we explore the metal-rich M 2 P (M = Fe, Co, Ni, Cu, Mo, Ru, Rh, Pd, Ag, Pt) series in hexagonal and orthorhombic structures that are common to a subset of these materials, using supercell density functional theory (DFT). To understand the contribution of metal choice to utility for catalytic ethane dehydrogenation (EDH), we compute and compare the adsorption of key EDH intermediates across low-index surface terminations. These materials expose both metal and phosphide sites. Calculations show that binding energies at metal sites correlate with the bulk metals, with P incorporation either enhancing or suppressing binding. Phosphide sites compete with metal sites for adsorbates and tend to suppress overactivation by destabilizing highly dehydrogenated species engaging in C–H bond breaking. Results are generally insensitive to bulk structure and surface facet. Results suggest metal-rich Pd phosphides to have favorable adsorption characteristics for catalytic dehydrogenation, consistent with recent observations. 
    more » « less