Explanations of AI Agents' actions are considered to be an important factor in improving users' trust in the decisions made by autonomous AI systems. However, as these autonomous systems evolve from reactive, i.e., acting on user input, to proactive, i.e., acting without requiring user intervention, there is a need to explore how the explanation for the actions of these agents should evolve. In this work, we explore the design of explanations through participatory design methods for a proactive auto-response messaging agent that can reduce perceived obligations and social pressure to respond quickly to incoming messages by providing unavailability-related context. We recruited 14 participants who worked in pairs during collaborative design sessions where they reasoned about the agent's design and actions. We qualitatively analyzed the data collected through these sessions and found that participants' reasoning about agent actions led them to speculate heavily on its design. These speculations significantly influenced participants' desire for explanations and the controls they sought to inform the agents' behavior. Our findings indicate a need to transform users' speculations into accurate mental models of agent design. Further, since the agent acts as a mediator in human-human communication, it is also necessary to account for social norms in its explanation design. Finally, user expertise in understanding their habits and behaviors allows the agent to learn from the user their preferences when justifying its actions.
- Award ID(s):
- 1901059
- NSF-PAR ID:
- 10336155
- Date Published:
- Journal Name:
- Mensh and Computer Workshop on Human-Centered Artificial Intelligence, 2021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
When people receive advice while making difficult decisions, they often make better decisions in the moment and also increase their knowledge in the process. However, such incidental learning can only occur when people cognitively engage with the information they receive and process this information thoughtfully. How do people process the information and advice they receive from AI, and do they engage with it deeply enough to enable learning? To answer these questions, we conducted three experiments in which individuals were asked to make nutritional decisions and received simulated AI recommendations and explanations. In the first experiment, we found that when people were presented with both a recommendation and an explanation before making their choice, they made better decisions than they did when they received no such help, but they did not learn. In the second experiment, participants first made their own choice, and only then saw a recommendation and an explanation from AI; this condition also resulted in improved decisions, but no learning. However, in our third experiment, participants were presented with just an AI explanation but no recommendation and had to arrive at their own decision. This condition led to both more accurate decisions and learning gains. We hypothesize that learning gains in this condition were due to deeper engagement with explanations needed to arrive at the decisions. This work provides some of the most direct evidence to date that it may not be sufficient to provide people with AI-generated recommendations and explanations to ensure that people engage carefully with the AI-provided information. This work also presents one technique that enables incidental learning and, by implication, can help people process AI recommendations and explanations more carefully.more » « less
-
The use of AI-based decision aids in diverse domains has inspired many empirical investigations into how AI models’ decision recommendations impact humans’ decision accuracy in AI-assisted decision making, while explorations on the impacts on humans’ decision fairness are largely lacking despite their clear importance. In this paper, using a real-world business decision making scenario—bidding in rental housing markets—as our testbed, we present an experimental study on understanding how the bias level of the AI-based decision aid as well as the provision of AI explanations affect the fairness level of humans’ decisions, both during and after their usage of the decision aid. Our results suggest that when people are assisted by an AI-based decision aid, both the higher level of racial biases the decision aid exhibits and surprisingly, the presence of AI explanations, result in more unfair human decisions across racial groups. Moreover, these impacts are partly made through triggering humans’ “disparate interactions” with AI. However, regardless of the AI bias level and the presence of AI explanations, when people return to make independent decisions after their usage of the AI-based decision aid, their decisions no longer exhibit significant unfairness across racial groups.
-
While a vast collection of explainable AI (XAI) algorithms has been developed in recent years, they have been criticized for significant gaps with how humans produce and consume explanations. As a result, current XAI techniques are often found to be hard to use and lack effectiveness. In this work, we attempt to close these gaps by making AI explanations selective ---a fundamental property of human explanations---by selectively presenting a subset of model reasoning based on what aligns with the recipient's preferences. We propose a general framework for generating selective explanations by leveraging human input on a small dataset. This framework opens up a rich design space that accounts for different selectivity goals, types of input, and more. As a showcase, we use a decision-support task to explore selective explanations based on what the decision-maker would consider relevant to the decision task. We conducted two experimental studies to examine three paradigms based on our proposed framework: in Study 1, we ask the participants to provide critique-based or open-ended input to generate selective explanations (self-input). In Study 2, we show the participants selective explanations based on input from a panel of similar users (annotator input). Our experiments demonstrate the promise of selective explanations in reducing over-reliance on AI and improving collaborative decision making and subjective perceptions of the AI system, but also paint a nuanced picture that attributes some of these positive effects to the opportunity to provide one's own input to augment AI explanations. Overall, our work proposes a novel XAI framework inspired by human communication behaviors and demonstrates its potential to encourage future work to make AI explanations more human-compatible.
-
Large Language Models (LLMs) are increasingly used for accessing information on the web. Their truthfulness and factuality are thus of great interest. To help users make the right decisions about the information they get, LLMs should not only provide information but also help users fact-check it. Our experiments with 80 crowdworkers compare language models with search engines (information retrieval systems) at facilitating fact-checking. We prompt LLMs to validate a given claim and provide corresponding explanations. Users reading LLM explanations are significantly more efficient than those using search engines while achieving similar accuracy. However, they over-rely on the LLMs when the explanation is wrong. To reduce over-reliance on LLMs, we ask LLMs to provide contrastive information - explain both why the claim is true and false, and then we present both sides of the explanation to users. This contrastive explanation mitigates users' over-reliance on LLMs, but cannot significantly outperform search engines. Further, showing both search engine results and LLM explanations offers no complementary benefits compared to search engines alone. Taken together, our study highlights that natural language explanations by LLMs may not be a reliable replacement for reading the retrieved passages, especially in high-stakes settings where over-relying on wrong AI explanations could lead to critical consequences.more » « less