skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization and Comparison of Convergence Among Cephalotus follicularis Pitcher Plant-Associated Communities With Those of Nepenthes and Sarracenia Found Worldwide
The Albany pitcher plant, Cephalotus follicularis , has evolved cup-shaped leaves and a carnivorous habit completely independently from other lineages of pitcher plants. It is the only species in the family Cephalotaceae and is restricted to a small region of Western Australia. Here, we used metabarcoding to characterize the bacterial and eukaryotic communities living in C. follicularis pitchers at two different sites. Bacterial and eukaryotic communities were correlated in both richness and composition; however, the factors associated with richness were not the same across bacteria and eukaryotes, with bacterial richness differing with fluid color, and eukaryotic richness differing with the concentration of DNA extracted from the fluid, a measure roughly related to biomass. For turnover in composition, the variation in both bacterial and eukaryotic communities primarily differed with fluid acidity, fluid color, and sampling site. We compared C. follicularis -associated community diversity with that of Australian Nepenthes mirabilis , as well as a global comparison of Southeast Asian Nepenthes and North American Sarracenia . Our results showed similarity in richness with communities from other pitcher plants, and specific bacterial taxa shared among all three independent lineages of pitcher plants. Overall, we saw convergence in richness and particular clades colonizing pitcher plants around the world, suggesting that these highly specialized habitats select for certain numbers and types of inhabitants.  more » « less
Award ID(s):
1757324 2025250
PAR ID:
10336226
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
13
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Plant‐associated microbial communities can profoundly affect plant health and success, and research is still uncovering factors driving the assembly of these communities. Here, we examine how geography versus host species affects microbial community structure and differential abundances of individual taxa. We use metabarcoding to characterize the bacteria and eukaryotes associated with five, often co‐occurring species ofSarraceniapitcher plants (Sarraceniaceae) and three natural hybrids along the longitudinal gradient of the U.S. Gulf Coast, as well as samples fromS.purpureain Massachusetts. To tease apart the effects of geography versus host species, we focus first on sites with co‐occurring species and then on species located across different sites. Our analyses show that bacterial and eukaryotic community structures are clearly and consistently influenced by host species identity, with geographic factors also playing a role. Naturally occurring hybrids appear to also host unique communities, which are in some ways intermediate between their parent species. We see significant effects of geography (site and longitude), but these generally explain less of the variation among pitcher communities. Overall, inSarraceniapitchers, host plant phenotype significantly affects the pitcher microbiomes and other associated organisms. 
    more » « less
  2. Glass, Jennifer B (Ed.)
    ABSTRACT Microbial communities perform various functions, many of which contribute to ecosystem-level nutrient cycling via decomposition. Factors influencing leaf detrital decomposition are well understood in terrestrial and aquatic ecosystems, but much less is known about arthropod detrital inputs. Here, we sought to infer how differences in arthropod detritus affect microbial-driven decomposition and community function in a carnivorous pitcher plant,Sarracenia purpurea. Using sterile mesh bags filled with different types of sterile arthropod prey, we assessed if prey type influenced the rate of decomposition in pitcher plants over 7 weeks. Additionally, we measured microbial community composition and function, including hydrolytic enzyme activity and carbon substrate use. When comparing decomposition rates, we found that ant and beetle prey with higher exoskeleton content lost less mass compared with fly prey. We observed the highest protease activity in the fly treatment, which had the lowest exoskeleton content. Additionally, we saw differences in the pH of the pitcher fluid, driven by the ant treatment which had the lowest pH. According to our results from 16S rRNA gene metabarcoding, prey treatments with the highest bacterial amplicon sequence variant (ASV) richness (ant and beetle) were associated with prey that lost a lower proportion of mass over the 7 weeks. Overall, arthropod detritus provides unique nutrient sources to decomposer communities, with different prey influencing microbial hydrolytic enzyme activity and composition. IMPORTANCEMicrobial communities play pivotal roles in nutrient cycling via decomposition and nutrient transformation; however, it is often unclear how different substrates influence microbial activity and community composition. Our study highlights how different types of insects influence decomposition and, in turn, microbial composition and function. We use the aquatic pools found in a carnivorous pitcher plant as small, discrete ecosystems that we can manipulate and study independently. We find that some insect prey (flies) breaks down faster than others (beetles or ants) likely because flies contain more things that are easy for microbes to eat and derive essential nutrients from. This is also reflected in higher enzyme activity in the microbes decomposing the flies. Our work bridges a knowledge gap about how different substrates affect microbial decomposition, contributing to the broader understanding of ecosystem function in a nutrient cycling context. 
    more » « less
  3. Nguyen, Nhu H (Ed.)
    ABSTRACT Across diverse ecosystems, bacteria and their hosts engage in complex relationships having negative, neutral, or positive interactions. However, the specific effects of leaf-associated bacterial community functions on plant growth are poorly understood. Although microbes can promote plant growth through various biochemical mechanisms, investigating the community’s functional contributions to plant growth remains to be explored. To address this gap, we characterized the relationships between bacterial community function and host plant growth in the purple pitcher plant (Sarracenia purpurea). The main aim of our research was to investigate how different bacterial community functions affect the growth and nutrient content in the plant. Previous research has suggested that microbial communities aid in prey decomposition and subsequent nutrient acquisition in carnivorous plants, includingS. purpurea. However, the specific functional roles of bacterial communities in plant growth and nutrient uptake are not well known. In this study, sterile, freshly opened pitchers were inoculated with three functionally distinct, pre-assembled bacterial communities. Bacterial community composition and function were measured over 8 weeks using physiological assays, metagenomics, and metatranscriptomics. Distinct community functions affected plant traits; a bacterial community enriched in decomposition was associated with larger leaves with almost double the biomass of control pitchers. Physiological differences in bacterial communities were supported by metatranscriptomics; for example, the bacterial community with the highest chitinase activity had greater expression of transcripts associated with chitinase enzymes. The relationship between bacterial community function and plant growth observed here indicates potential mechanisms, such as chitinase activity, for host-associated bacterial functions to support pitcher plant growth. IMPORTANCEThis study addresses a gap in understanding the relationships between bacterial community function and plant growth. We inoculated sterile, freshly opened pitcher plant leaves with three functionally distinct bacterial communities to uncover potential mechanisms through which bacterial functions support plant health and growth. Our findings demonstrate that distinct community functions significantly influence plant traits, with some bacterial communities supporting more plant growth than in control pitchers. These results highlight the ecological roles of microbial communities in plants and thus ecosystems and suggest that nutrient cycling is an important pathway through which microbes support host plant health. This research provides valuable insights into plant-microbe interactions and the effects of diverse microbial community functions. 
    more » « less
  4. Russel, JA (Ed.)
    Understanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant, Sarracenia purpurea, offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito, Wyeomyia smithii, in top-down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population of S. purpurea pitchers over a 74-day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high-level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment-independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top-down control of microbial functions in an aquatic microecosystem. 
    more » « less
  5. Abstract Understanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant,Sarracenia purpurea, offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito,Wyeomyia smithii, in top‐down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population ofS. purpureapitchers over a 74‐day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high‐level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment‐independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top‐down control of microbial functions in an aquatic microecosystem. 
    more » « less