skip to main content

Title: Photostability of 2,6-diaminopurine and its 2′-deoxyriboside investigated by femtosecond transient absorption spectroscopy
Ultraviolet radiation (UVR) from the sun is essential for the prebiotic syntheses of nucleotides, but it can also induce photolesions such as the cyclobutane pyrimidine dimers (CPDs) to RNA or DNA oligonucleotide in prebiotic Earth. 2,6-Diaminopurine (26DAP) has been proposed to repair CPDs in high yield under prebiotic conditions and be a key component in enhancing the photostability of higher-order prebiotic DNA structures. However, its electronic relaxation pathways have not been studied, which is necessary to know whether 26DAP could have survived the intense UV fluxes of the prebiotic Earth. We investigate the electronic relaxation mechanism of both 26DAP and its 2′-deoxyribonucleoside (26DAP-d) in aqueous solution using steady-state and femtosecond transient absorption measurements that are complemented with electronic-structure calculations. The results demonstrate that both purine derivatives are significantly photostable to UVR. It is shown that upon excitation at 287 nm, the lowest energy 1 ππ* state is initially populated. The population then branches following two relaxation coordinates in the 1 ππ* potential energy surface, which are identified as the C2- and C6-relaxation coordinates. The population following the C6-coordinate internally converts to the ground state nonradiatively through a nearly barrierless conical intersection within 0.7 ps in 26DAP or within 1.1 ps more » in 26DAP-d. The population that follows the C2-relaxation coordinate decays back to the ground state by a combination of nonradiative internal conversion via a conical intersection and fluorescence emission from the 1 ππ* minimum in 43 ps and 1.8 ns for the N9 and N7 tautomers of 26DAP, respectively, or in 70 ps for 26DAP-d. Fluorescence quantum yields of 0.037 and 0.008 are determined for 26DAP and 26DAP-d, respectively. Collectively, it is demonstrated that most of the excited state population in 26DAP and 26DAP-d decays back to the ground state via both nonradiative and radiative relaxation pathways. This result lends support to the idea that 26DAP could have accumulated in large enough quantities during the prebiotic era to participate in the formation of prebiotic RNA or DNA oligomers and act as a key component in the protection of the prebiotic genetic alphabet. « less
Authors:
; ; ;
Award ID(s):
1800052
Publication Date:
NSF-PAR ID:
10336273
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
7
Page Range or eLocation-ID:
4204 to 4211
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. Photostability is thought to be an inherent property of nucleobases required to survive the extreme ultraviolet radiation conditions of the prebiotic era. Previous studies have shown that absorption of ultraviolet radiation by the canonical nucleosides results in ultrafast internal conversion to the ground state, demonstrating that these nucleosides efficiently dissipate the excess electronic energy to the environment. In recent years, studies on the photophysical and photochemical properties of nucleobase derivatives have revealed that chemical substitution influences the electronic relaxation pathways of purine and pyrimidine nucleobases. It has been suggested that amino or carbonyl substitution at the C6 position could increase the photostability of the purine derivatives more than the substitution at the C2 position. This investigation aims to elucidate the excited state dynamics of 2′-deoxyisoguanosine (dIsoGuo) and isoguanosine (IsoGuo) in aqueous solution at pH 7.4 and 1.4, which contain an amino group at the C6 position and a carbonyl group at the C2 position of the purine chromophore. The study of these derivatives is performed using absorption and emission spectroscopies, broadband transient absorption spectroscopy, and density functional and time-dependent density functional levels of theory. It is shown that the primary relaxation mechanism of dIsoGuo and IsoGuo involves nonradiative decay pathways,more »where the population decays from the S 1 (ππ*) state through internal conversion to the ground state via two relaxation pathways with lifetimes of hundreds of femtoseconds and less than 2 ps, making these purine nucleosides photostable in aqueous solution.« less
  2. Cyanuric acid is a triazine derivative that has been identified from reactions performed under prebiotic conditions and has been proposed as a prospective precursor of ancestral RNA. For cyanuric acid to have played a key role during the prebiotic era, it would have needed to survive the harsh electromagnetic radiation conditions reaching the Earth’s surface during prebiotic times (≥200 nm). Therefore, the photostability of cyanuric acid would have been crucial for its accumulation during the prebiotic era. To evaluate the putative photostability of cyanuric acid in water, in this contribution, we employed density functional theory (DFT) and its time-dependent variant (TD-DFT) including implicit and explicit solvent effects. The calculations predict that cyanuric acid has an absorption maximum at ca. 160 nm (7.73 eV), with the lowest-energy absorption band extending to ca. 200 nm in an aqueous solution and exhibiting negligible absorption at longer wavelengths. Excitation of cyanuric acid at 160 nm or longer wavelengths leads to the population of S5,6 singlet states, which have ππ* character and large oscillator strengths (0.8). The population reaching the S5,6 states is expected to internally convert to the S1,2 states in an ultrafast time scale. The S1,2 states, which have nπ* character, are predictedmore »to access a conical intersection with the ground state in a nearly barrierless fashion (ca. ≤ 0.13 eV), thus efficiently returning the population to the ground state. Furthermore, based on calculated spin–orbit coupling elements of ca. 6 to 8 cm−1, the calculations predict that intersystem crossing to the triplet manifold should play a minor role in the electronic relaxation of cyanuric acid. We have also calculated the vertical ionization energy of cyanuric acid at 8.2 eV, which predicts that direct one-photon ionization of cyanuric acid should occur at ca. 150 nm. Collectively, the quantum-chemical calculations predict that cyanuric acid would have been highly photostable under the solar radiation conditions reaching the Earth’s surface during the prebiotic era in an aqueous solution. Of relevance to the chemical origin of life and RNA-first theories, these observations lend support to the idea that cyanuric acid could have accumulated in large quantities during the prebiotic era and thus strengthens its candidature as a relevant prebiotic nucleobase.« less
  3. Today’s genetic composition is the result of continual refinement processes on primordial heterocycles present in prebiotic Earth and at least partially regulated by ultraviolet radiation. Femtosecond transient absorption spectroscopy and state-of-the-art ab initio calculations are combined to unravel the electronic relaxation mechanism of pyrimidine―the common chromophore of the nucleobases. Excitation of pyrimidine at 268 nm populates the S1(nπ*) state directly. A fraction of the population intersystem crosses to the triplet manifold within 7.8 ps, partially decaying within 1.5 ns, while another fraction recovers the ground state in >3 ns. The pyrimidine chromophore is not responsible for the photostability of the nucleobases. Instead, C2 and C4 amino and/or carbonyl functionalization is essential for shaping the topography of pyrimidine’s potential energy surfaces, which present accessible conical intersections between the initially populated electronic excited state and the ground state.
  4. Sulfur-substituted DNA and RNA nucleobase derivatives (a.k.a., thiobases) are an important family of biomolecules. They are used as prodrugs and as chemotherapeutic agents in medical settings, and as photocrosslinker molecules in structural-biology applications. Remarkably, excitation of thiobases with ultraviolet to near-visible light results in the population of long-lived and reactive triplet states on a time scale of hundreds of femtoseconds and with near-unity yields. This efficient nonradiative decay pathway explains the vanishingly small fluorescence yields reported for the thiobases and the scarcity of fluorescence lifetimes in the literature. In this study, we report fluorescence lifetimes for twelve thiobase derivatives, both in aqueous solution at physiological pH and in acetonitrile. Excitation is performed at 267 and 362 nm, while fluorescence emission is detected at 380, 425, 450, 525, or 532 nm. All the investigated thiobases reveal fluorescence lifetimes that decay in a few hundreds of femtoseconds and with magnitudes that depend and are sensitive to the position and degree of sulfur-atom substitution and on the solvent environment. Interestingly, however, three thiopyrimidine derivatives (i.e., 2-thiocytidine, 2-thiouridine, and 4-thiothymidine) also exhibit a small amplitude fluorescence component of a few picoseconds in aqueous solution. Furthermore, the N-glycosylation of thiobases to form DNA or RNAmore »nucleoside analogues is demonstrated as affecting their fluorescence lifetimes. In aqueous solution, the fluorescence decay signals exciting at 267 nm are equal or slower than those collected exciting at 362 nm. In acetonitrile, however, the fluorescence decay signals recorded upon 267 nm excitation are, in all cases, faster than those measured exciting at 362 nm. A comparison to the literature values show that, while both the DNA and RNA nucleobase and thiobase derivatives exhibit sub-picosecond fluorescence lifetimes, the 1ππ* excited-state population in the nucleobase monomers primarily decay back to the ground state, whereas it predominantly populates long-lived and reactive triplet states in thiobase monomers.« less
  5. Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition showsmore »a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm−1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.« less