skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accessing lanthanide-based, in situ illuminated optical turn-on probes by modulation of the antenna triplet state energy
Luminescent lanthanides possess ideal properties for biological imaging, including long luminescent lifetimes and emission within the optical window. Here, we report a novel approach to responsive luminescent Tb( iii ) probes that involves direct modulation of the antenna excited triplet state energy. If the triplet energy lies too close to the 5 D 4 Tb( iii ) excited state (20 500 cm −1 ), energy transfer to 5 D 4 competes with back energy transfer processes and limits lanthanide-based emission. To validate this approach, a series of pyridyl-functionalized, macrocyclic lanthanide complexes were designed, and the corresponding lowest energy triplet states were calculated using density functional theory (DFT). Subsequently, three novel constructs L3 (nitro-pyridyl), L4 (amino-pyridyl) and L5 (fluoro-pyridyl) were synthesized. Photophysical characterization of the corresponding Gd( iii ) complexes revealed antenna triplet energies between 25 800 and 30 400 cm −1 and a 500-fold increase in quantum yield upon conversion of Tb( L3 ) to Tb( L4 ) using the biologically relevant analyte H 2 S. The corresponding turn-on reaction can be monitored using conventional, small-animal optical imaging equipment in presence of a Cherenkov radiation emitting isotope as an in situ excitation source, demonstrating that antenna triplet state energy modulation represents a viable approach to biocompatible, Tb-based optical turn-on probes.  more » « less
Award ID(s):
1942434
PAR ID:
10336277
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
27
ISSN:
2041-6520
Page Range / eLocation ID:
9442 to 9451
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Two efficient lanthanide ion sensitizers 2,6-bis(oxazoline)-4-phenyl-pyridine (PyboxPh, 1 ) and 2,6-bis(oxazoline)-4-thiophen-2-yl-pyridine (Pybox2Th, 2 ) were synthesized. 1 crystallizes in the monoclinic space group P 21/ c with cell parameters a = 16.3794(4) Å, b = 7.2856(2) Å, c = 11.7073(3) Å, β = 97.229(1)° and V = 1385.97(6) Å 3 . 2 crystallizes in the monoclinic space group P 21/ n with cell parameters a = 5.9472(2), b = 16.0747(6), c = 14.3716(5) Å, β = 93.503(1)° and V = 1371.35(8) Å 3 . Photophysical characterization of 1 shows that its triplet state energy is located at 22 250 cm −1 and efficient energy transfer is observed for Eu III and Tb III . Solutions of [Ln(PyboxPh) 3 ] 3+ in dichloromethane display an emission efficiency of 37.2% for LnEu and 24.0% for LnTb. The excited state lifetimes for Eu III and Tb III are 2.227 ms and 723 μs, respectively. The triplet state energy of 2 is located at 19 280 cm −1 and is therefore too low to efficiently sensitize Tb III emission. However, the sensitization of Eu III is effective, with an emission quantum yield of 14.5% and an excited state lifetime of 714 μs. This shows that the derivatization of the chelator is strongly influenced by the aromatic substituents on the para -position of the pyridine ring. New isostructural 1 : 1 complexes of PyboxPh with Eu III ( 3 ) and Tb III ( 4 ) were also isolated and crystallize in the triclinic space group P 1̄ with cell parameters a = 9.1845(2) Å, b = 10.3327(2) Å, c = 11.9654(2) Å, α = 98.419(1)°, β = 108.109(1)°, γ = 91.791(1)°, V = 1064.08(4) Å 3 and a = 7.8052(1) Å, b = 11.8910(1) Å, c = 14.2668(2) Å, α = 72.557(1)°, β = 86.355(1)°, γ = 77.223(1)°, V = 1231.95(3) Å 3 , respectively. 
    more » « less
  2. A new series of gallium( iii )/lanthanide( iii ) metallacrown (MC) complexes ( Ln-1 ) was synthesized by the direct reaction of salicylhydroxamic acid (H 3 shi) with Ga III and Ln III nitrates in a CH 3 OH/pyridine mixture. X-ray single crystal analysis revealed two types of structures depending on whether the nitrate counterion coordinate or not to the Ln III : [LnGa 4 (shi) 4 (H 2 shi) 2 (py) 4 (NO 3 )](py) 2 (Ln = Gd III , Tb III , Dy III , Ho III ) and [LnGa 4 (shi) 4 (H 2 shi) 2 (py) 5 ](NO 3 )(py) (Ln = Er III , Tm III , Yb III ). The representative Tb-1 and Yb-1 MCs consist of a Tb/YbGa 4 core with four [Ga III –N–O] repeating units forming a non-planar ring that coordinates the central Ln III through the oxygen atoms of the four shi 3− groups. Two H 2 shi − groups bridge the Ln III to the Ga III ring ions. The Yb III in Yb-1 is eight-coordinated while the ligation of the nine-coordinated Tb III in Tb-1 is completed by one chelating nitrate ion. Ln-1 complexes in the solid state showed characteristic sharp f–f transitions in the visible (Tb, Dy) and near-infrared (Dy, Ho, Er, Yb) spectral ranges upon excitation into the ligand-centered electronic levels at 350 nm. Observed luminescence lifetimes and absolute quantum yields were collected and discussed. For Yb-1 , luminescence data were also acquired in CH 3 OH and CD 3 OD solutions and a more extensive analysis of photophysical properties was performed. This work demonstrates that while obtaining highly luminescent lanthanide( iii ) MCs via a direct synthesis is feasible, many factors such as molar absorptivities, triplet state energies, non-radiative deactivations through vibronic coupling with overtones of O–H, N–H, and C–H oscillators and crystal packing will strongly contribute to the luminescent properties and should be carefully considered. 
    more » « less
  3. We describe the synthesis of C 2 -symmetrical enantiopure lanthanide complexes (Tb, Eu, Sm, Dy) supported by the decadentate ligand N , N , N ′, N ′-tetrakis[(6-carboxypyridin-2-yl)methyl]-1,2-diaminocyclohexane (tpadac). The chiral tpadac ligand was designed to protect the lanthanide center from coordination of inner-sphere water molecules resulting in air- and water-stable, and highly luminescent complexes in water. The complexes exhibit strong chiroptical properties, with high dissymmetry factors g lum (0.11 to 0.25) and CPL brightness B CPL (up to 245 M −1 cm −1 for Tb, λ exc 295 nm, λ em 544 nm) in water. These are the first example of aqueous Sm CPL and second example of aqueous Dy CPL reported to date. The lanthanide complexes obtained gave a reversible CPL response to pH ranging from 6.0 to 8.0. In addition, distinctive CPL responses (including a change in CPL sign) towards toxic cations (Pb 2+ , Cd 2+ , and Mn 2+ ) were also observed, demonstrating the potential of our complexes to be used as aqueous probes. 
    more » « less
  4. null (Ed.)
    A new naphthylsalophen and its 3 : 2 ligand-to-lanthanide sandwich-type complexes were isolated. When excited at 380 nm, the complexes display the characteristic metal-centred emission for Nd III , Er III and Yb III . Upon 980 nm excitation, in mixed lanthanide and the Er complexes, Er-centred upconversion emission at 543 and 656 nm is observed, with power densities as low as 2.18 W cm −2 . 
    more » « less
  5. The long luminescence lifetimes and sharp emission bands of luminescent lanthanide complexes have long been recognized as invaluable strengths for sensing and imaging in complex aqueous biological or environmental media. Herein we discuss the recent developments of these probes for sensing metal ions and, increasingly, anions. Underappreciated in the field, buffers and metal hydrolysis influence the response of many responsive lanthanide probes. The inherent complexities arising from these interactions are further discussed. 
    more » « less