skip to main content


This content will become publicly available on May 2, 2025

Title: Mechanical property characterizations of woven natural fiber-reinforced polymers 3D printed through a laminated object manufacturing process
The mechanical properties of woven natural fiber reinforced polymers additively manufactured through Laminated Object Manufacturing (LOM) technology are investigated in this paper. The benefits of both the material and manufacturing process were combined into a sustainable practice, as a potential alternative to traditional synthetic composite materials made from nonrenewable crude oil with limited end-of-life alternatives. Woven jute fiber reinforcements are used to strengthen both synthetic and bio- thermoplastic polymers in creating highly biodegradable composite structures. Such materials, as one of the prospective alternatives for synthetic composites, can be used in many engineering fields such as automobile panels, construction materials, and commodity and recreational products including sports and musical instruments. A LOM 3D printer prototype was designed and built by the authors. All woven jute/polymer biocomposite test specimens made using the built prototype in this study had their mechanical (both tensile and flexural) properties assessed using ASTM test standards and then compared to similar values measured from pure polymer specimens. Improved mechanical characteristics were identified and analyzed. Finally, SEM imaging was performed to identify the polymer infusion and fibermatrix bonding conditions.  more » « less
Award ID(s):
1900699
NSF-PAR ID:
10504787
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Taylor and Francis
Date Published:
Journal Name:
Polymer-Plastics Technology and Materials
ISSN:
2574-0881
Page Range / eLocation ID:
1 to 12
Subject(s) / Keyword(s):
Laminated object manufacturing (LOM) mechanical properties PLA polymers prepregs woven jute fiber
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beckwith, S. ; Flinn, B. ; Dustin, J. (Ed.)
    A novel additive manufacturing process utilizing the laminated object manufacturing (LOM) technology with woven natural fiber-reinforced biopolymer is investigated in this paper. Traditional synthetic composite materials are products from nonrenewable crude oil with limited end-of-life options, and therefore not environmentally friendly. The continuous woven natural fiber is used to significantly strengthen the mechanical properties of biocomposites and PLA biopolymer as the matrix made the material completely biodegradable. This is one of the promising replacements for synthetic composites in applications such as automotive panels, constructive materials, and sports and musical instruments. A LOM 3D printer prototype has been designed and built by the team using a laser beam in cutting the woven natural fiber reinforcement and molten PLA powder to bind layers together. Tensile and flexural properties of the LOM 3D printed biocomposites were measured using ASTM test standards and then compared with corresponding values measured from pure PLA specimens 3D printed through FDM. Improved mechanical properties from LOM 3D-printed biocomposites were identified by the team. SEM imaging was performed to identify the polymer infusing and fiber-matrix binding situations. This research took advantage of both the material and process’s benefits and combine them into one sustainable practice. 
    more » « less
  2. Ozden Ochoa (Ed.)
    This paper investigates the mechanical properties of potential sheet stocks of a Laminated Object Manufacturing (LOM) 3D printer made using woven jute fabrics infused with two types of bioresin. The combinations of bioresins and the reinforcements would make green sheet stocks that are expected to be environmentally friendly comparing to traditional synthetic fibers infused with regular resins. Pure resin samples are also involved for comparison purposes. Both tensile and flexural properties are measured following ASTM D638 and D3039 standards (for tensile tests) as well as ASTM D790 and D7264 standards (for flexural tests). Detailed processes of specimen preparation followed by test procedures are introduced. Tensile strengths and moduli as well as flexural strengths and moduli are obtained for comparison. Based on the study of the mechanical properties of both types of pure resin and woven jute fiber-reinforced composites, the research team concluded a few important findings that could be used as guidelines in the sheet stock selection and preparation for the LOM 3D printer that is currently under the building process. 
    more » « less
  3. Biocomposites have become more mainstream over the past decades for preserving the environment and producing sustainable materials as a potential substitute to synthetic polymer based composites derived from scarce petroleum materials. However, it is essential to investigate their mechanical, thermal and fire retardancy performance to answer the question of their suitability in automobile, biomedical, construction, film packaging, and commercial industries. In this work, we have studied one such promising biocomposites, jute fiber/poly (3-hydroxy-butyrate-co-3-valerate) (PHBV) and investigated their aforementioned properties. At first, 3–15 wt% halloysite nanotubes (HNTs) were dispersed in PHBV/chloroform mixture using an ultrasound process. PHBV/HNTs thin films were then prepared using the solvent casting method. Finally, jute fiber/PHBV-HNTs bionanocomposites were prepared using the compression mold method. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests were performed to study the thermal and fire retardancy properties. Uniaxial tensile and flexure tests were also performed to investigate the mechanical properties. In addition, scanning electron microscopy (SEM) was carried out to analyze the fracture surfaces of flexure tested samples. Results of jute/PHBV composites showed a significant increase in thermal and mechanical properties at 5 wt% HNTs loading in comparison to neat composites (without HNTs). In contrast, the composites with 15 wt% loading showed superior fire retardancy. SEM images of flexure tested samples showed enhanced interfacial bonding and less fiber pullout when compared to neat counterparts.

     
    more » « less
  4. Abstract

    Engineered composite scaffolds composed of natural and synthetic polymers exhibit cooperation at the molecular level that closely mimics tissue extracellular matrix's (ECM) physical and chemical characteristics. However, due to the lack of smooth intermix capability of natural and synthetic materials in the solution phase, bio‐inspired composite material development has been quite challenged. In this research, we introduced new bio‐inspired material blending techniques to fabricate nanofibrous composite scaffolds of chitin nanofibrils (CNF), a natural hydrophilic biomaterial and poly (ɛ‐caprolactone) (PCL), a synthetic hydrophobic‐biopolymer. CNF was first prepared by acid hydrolysis technique and dispersed in trifluoroethanol (TFE); and second, PCL was dissolved in TFE and mixed with the chitin solution in different ratios. Electrospinning and spin‐coating technology were used to form nanofibrous mesh and films, respectively. Physicochemical properties, such as mechanical strength, and cellular compatibility, and structural parameters, such as morphology, and crystallinity, were determined. Toward the potential use of this composite materials as a support membrane in blood–brain barrier application (BBB), human umbilical vein endothelial cells (HUVECs) were cultured, and transendothelial electrical resistance (TEER) was measured. Experimental results of the composite materials with PCL/CNF ratios from 100/00 to 25/75 showed good uniformity in fiber morphology and suitable mechanical properties. They retained the excellent ECM‐like properties that mimic synthetic‐bio‐interface that has potential application in biomedical fields, particularly tissue engineering and BBB applications.

     
    more » « less
  5. Polymer composites are becoming an important class of materials for a diversified range of industrial applications due to their unique characteristics and natural and synthetic reinforcements. Traditional methods of polymer composite fabrication require machining, manual labor, and increased costs. Therefore, 3D printing technologies have come to the forefront of scientific, industrial, and public attention for customized manufacturing of composite parts having a high degree of control over design, processing parameters, and time. However, poor interfacial adhesion between 3D printed layers can lead to material failure, and therefore, researchers are trying to improve material functionality and extend material lifetime with the addition of reinforcements and self-healing capability. This review provides insights on different materials used for 3D printing of polymer composites to enhance mechanical properties and improve service life of polymer materials. Moreover, 3D printing of flexible energy-storage devices (FESD), including batteries, supercapacitors, and soft robotics using soft materials (polymers), is discussed as well as the application of 3D printing as a platform for bioengineering and earth science applications by using a variety of polymer materials, all of which have great potential for improving future conditions for humanity and planet Earth. 
    more » « less