skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: period Translation as a Core Mechanism Controlling Temperature Compensation in an Animal Circadian Clock
The most enigmatic of the canonical properties of circadian clocks is temperature compensation where circadian period length is stable across a wide temperature range despite the temperature dependence of most biochemical reactions. While the core mechanisms of circadian clocks have been well described, the molecular mechanisms of temperature compensation are poorly understood especially in animals. A major gap is the lack of temperature compensation mutants that do not themselves unambiguously affect the temperature dependence of the encoded protein. Here we show that null alleles of two genes encoding components of a complex important for translation of the core clock component period in circadian pacemaker neurons robustly alter the temperature dependence of circadian behavioral period length. These changes are accompanied by parallel temperature dependent changes in oscillations of the PER protein and are consistent with the model that these translation factors mediate the temperature-dependence of PER translation. Consistent with findings from modeling studies, we find that translation of the key negative feedback factor PER plays an instrumental role in temperature compensation.  more » « less
Award ID(s):
1764421
PAR ID:
10336404
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
bioRxiv
ISSN:
2692-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many female mammals have recurring cycles of ovulation and sexual behaviors that are regulated by reproductive hormones and confer reproductive success. In addition to sexual behaviors, circadian behavioral rhythms of locomotor activity also fluctuate across the estrous cycle in rodents. Moreover, there is a bidirectional relationship between circadian rhythms and estrous cyclicity since mice with disrupted circadian rhythms also have compromised estrous cycles resulting in fewer pregnancies. In the present study, we assessed whether extending day length, which alters circadian rhythms, normalizes estrous cyclicity in mice. We found that Period (Per) 1/2/3 triple knockout (KO) mice, that have disabled canonical molecular circadian clocks, have markedly disrupted estrous cycles. Surprisingly, extending the day length by only 2 hours per day restored regular 4- or 5-day estrous cycles to Per1/2/3 KO mice. Longer days also induced consistent 4-day, rather than 5-day, estrous cycles in wild-type C57BL/6J mice. These data demonstrate that extending daytime light exposure could be used for enhancing reproductive success. 
    more » « less
  2. The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this posttranslational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism. We demonstrate that the stability of gsKaiB increases with temperature compared to fsKaiB and that the Q10 value for the gsKaiB → fsKaiB transition is nearly three times smaller than that for the reverse transition in a construct optimized for NMR studies. Simulations and native-state hydrogen-deuterium exchange NMR experiments suggest that fold switching can involve both partially and completely unfolded intermediates. The simulations predict that the transition state for fold switching coincides with isomerization of conserved prolines in the most rapidly exchanging region, and we confirm experimentally that proline isomerization is a rate-limiting step for fold switching. We explore the implications of our results for temperature compensation, a hallmark of circadian clocks, through a kinetic model. 
    more » « less
  3. Liquid–liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro using recombinant proteins or in cells that overexpress protein, the physiological relevance of LLPS for endogenous protein is often unclear. PERIOD, the intrinsically disordered domain-rich proteins, are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Circadian clock studies often rely on experiments that overexpress clock proteins. Here, we show that when Per2 transgene was stably expressed in cells, PER2 protein formed nuclear phosphorylation-dependent slow-moving LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing nuclear microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by protein overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins are a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian clock studies. 
    more » « less
  4. Many living organisms track the 24-hour cycle of day and night via collections of proteins and other molecules that together act like an internal clock. These clocks, also known as circadian clocks, help these organisms to predict regular changes in their environment, like light and temperature, and adjust their activities according to the time of day. Plants use circadian clocks to predict, for example, when dawn will occur and get ready to harness sunlight to fuel their growth. A plant called Arabidopsis thaliana has a light-sensitive protein called ZEITLUPE (or ZTL for short) that helps it keep its circadian clock in sync with the cycle of night and day. Previous studies have shown that light activates this protein causing part of it to change shape and then revert back after a period of about an hour and a half. However, it was unclear if this timing was important for ZEITLUPE to allow plants to keep track of time. To help answer this question, Pudasaini et al. set out to identify a specific chemical event behind ZEITLUPE’s changes in shape. A chemical bond forms when light activates ZEITLUPE, and it turns out that how long this bond lasts before it breaks plays an important role in allowing plants to maintain a 24-hour circadian clock. This chemical bond controls the shape changes that guide the protein’s activities and, when Pudasaini et al. modified ZEITLUPE so that it took much longer for this bond to break, they could tune how fast the plant’s internal clocks run. In essence, the time between the bond forming and breaking breaks acts like a countdown on a stopwatch, and it must be precisely timed to keep the clock in pace with the environment. These findings improve our understanding of how light can regulate an internal biological clock. This improved understanding could, in the future, allow researchers to manipulate how plants and other organisms respond to their environment. This in turn could change how these organisms develop, and how much they grow. As such, extending these findings into agricultural crops may one day lead to new ways to increase crop yields. 
    more » « less
  5. The circadian clock is the broadly conserved, protein-based, timekeeping mechanism that synchronizes biology to the Earth’s 24-h light-dark cycle. Studies of the mechanisms of circadian timekeeping have placed great focus on the role that individual protein-protein interactions play in the creation of the timekeeping loop. However, research has shown that clock proteins most commonly act as part of large macromolecular protein complexes to facilitate circadian control over physiology. The formation of these complexes has led to the large-scale study of the proteins that comprise these complexes, termed here “circadian interactomics.” Circadian interactomic studies of the macromolecular protein complexes that comprise the circadian clock have uncovered many basic principles of circadian timekeeping as well as mechanisms of circadian control over cellular physiology. In this review, we examine the wealth of knowledge accumulated using circadian interactomics approaches to investigate the macromolecular complexes of the core circadian clock, including insights into the core mechanisms that impart circadian timing and the clock’s regulation of many physiological processes. We examine data acquired from the investigation of the macromolecular complexes centered on both the activating and repressing arm of the circadian clock and from many circadian model organisms. 
    more » « less