skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chiral transport in curved spacetime via holography
A bstract We consider a holographic model of strongly interacting plasma with a gravitational anomaly. In this model, we compute parity-odd responses of the system at finite temperature and chemical potential to external electromagnetic and gravitational fields. Working within the linearized fluid/gravity duality, we performed the calculation up to the third order in gradient expansion. Besides reproducing the chiral magnetic (CME) and vortical (CVE) effects we also obtain gradient corrections to the CME and CVE due to the gravitational anomaly. Additionally, we find energy-momentum and current responses to the gravitational field similarly determined by the gravitational anomaly. The energy-momentum response is the first purely gravitational transport effect that has been related to quantum anomalies in a holographic theory.  more » « less
Award ID(s):
1918065
PAR ID:
10336542
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
8
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Andrews, David L; Galvez, Enrique J; Rubinsztein-Dunlop, Halina (Ed.)
    A quarter century of progress in holographic optical trapping has yielded fundamental advances in the science of classical wave-matter interactions. These efforts have drawn attention to the connection between wavefront topology and wave-mediated forces, including the interrelated roles of orbital and spin angular momentum, and the interplay between conservative intensity-gradient forces and non-conservative phase-gradient forces. Holographically structured force landscapes can act as knots, micromachines and even tractor beams and have permeated application areas ranging from biomedical research to quantum computing. Lessons learned from holographic optical trapping recently have been applied to acoustic micromanipulation, with remarkable effect. Beyond an overall leap in the force scales that can be achieved with sound, advances in acoustic trapping are casting new light on the nature of wave-matter interactions, including the role of nonreciprocal wave-mediated interactions in creating novel states of organization. 
    more » « less
  2. Abstract The cause of southward shift of anomalous zonal wind in the central equatorial Pacific (CEP) during ENSO mature winter was investigated through observational analyses and numerical model experiments. Based on an antisymmetric zonal momentum budget diagnosis using daily ERA-Interim data, a two-step physical mechanism is proposed. The first step involves advection of the zonal wind anomaly by the climatological mean meridional wind. The second step involves the development of an antisymmetric mode in the CEP, which promotes a positive contribution to the observed zonal wind tendency by the pressure gradient and Coriolis forces. Two positive feedbacks are responsible for the growth of the antisymmetric mode. The first involves the moisture–convection–circulation feedback, and the second involves the wind–evaporation–SST feedback. General circulation model experiments further demonstrated that the boreal winter background state is critical in generating the southward shift, and a northward shift of the zonal wind anomaly is found when the same SST anomaly is specified in boreal summer background state. 
    more » « less
  3. Abstract Coronal mass ejections (CMEs) are massive solar eruptions, which have a significant impact on Earth. In this paper, we propose a new method, called DeepCME, to estimate two properties of CMEs, namely, CME mass and kinetic energy. Being able to estimate these properties helps better understand CME dynamics. Our study is based on the CME catalog maintained at the Coordinated Data Analysis Workshops Data Center, which contains all CMEs manually identified since 1996 using the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory. We use LASCO C2 data in the period between 1996 January and 2020 December to train, validate, and test DeepCME through 10-fold cross validation. The DeepCME method is a fusion of three deep-learning models, namely ResNet, InceptionNet, and InceptionResNet. Our fusion model extracts features from LASCO C2 images, effectively combining the learning capabilities of the three component models to jointly estimate the mass and kinetic energy of CMEs. Experimental results show that the fusion model yields a mean relative error (MRE) of 0.013 (0.009, respectively) compared to the MRE of 0.019 (0.017, respectively) of the best component model InceptionResNet (InceptionNet, respectively) in estimating the CME mass (kinetic energy, respectively). To our knowledge, this is the first time that deep learning has been used for CME mass and kinetic energy estimations. 
    more » « less
  4. A bstract The infrared behavior of gravity in 4D asymptotically flat spacetime exhibits a rich set of symmetries. This has led to a proposed holographic duality between the gravitational $$ \mathcal{S} $$ S -matrix and a dual field theory living on the celestial sphere. Most of our current understanding of the dictionary relies on knowledge of the 4D bulk. As such, identifying intrinsic 2D models that capture the correct symmetries and soft dynamics of 4D gravity is an active area of interest. Here we propose that a 2D generalization of SYK provides an instructive toy model for the soft limit of the gravitational sector in 4D asymptotically flat spacetime. We find that the symmetries and soft dynamics of the 2D SYK model capture the salient features of the celestial theory: exhibiting chaotic dynamics, conformal invariance, and a w 1+ ∞ symmetry. The holographic map from 2D SYK operators to the 4D bulk employs the Penrose twistor transform. 
    more » « less
  5. A<sc>bstract</sc> The gravitational path integral can be used to compute the number of black hole states for a given energy window, or the free energy in a thermal ensemble. In this article we explain how to use the gravitational path integral to compute the separate number of bosonic and fermionic black hole microstates. We do this by comparing the partition function with and without the insertion of (−1)F. In particular we introduce a universal rotating black hole that contributes to the partition function in the presence of (−1)F. We study this problem for black holes in asymptotically flat space and in AdS, putting constraints on the high energy spectrum of holographic CFTs (not necessarily supersymmetric). Finally, we analyze wormhole contributions to related quantities. 
    more » « less