skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Random conical tilt reconstruction without particle picking in cryo-electron microscopy
A method is proposed to reconstruct the 3D molecular structure from micrographs collected at just one sample tilt angle in the random conical tilt scheme in cryo-electron microscopy. The method uses autocorrelation analysis on the micrographs to estimate features of the molecule which are invariant under certain nuisance parameters such as the positions of molecular projections in the micrographs. This enables the molecular structure to be reconstructed directly from micrographs, completely circumventing the need for particle picking. Reconstructions are demonstrated with simulated data and the effect of the missing-cone region is investigated. These results show promise to reduce the size limit for single-particle reconstruction in cryo-electron microscopy.  more » « less
Award ID(s):
2009753 1837992
PAR ID:
10336599
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Acta Crystallographica Section A Foundations and Advances
Volume:
78
Issue:
4
ISSN:
2053-2733
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background Cryo-electron microscopy (Cryo-EM) is widely used in the determination of the three-dimensional (3D) structures of macromolecules. Particle picking from 2D micrographs remains a challenging early step in the Cryo-EM pipeline due to the diversity of particle shapes and the extremely low signal-to-noise ratio of micrographs. Because of these issues, significant human intervention is often required to generate a high-quality set of particles for input to the downstream structure determination steps. Results Here we propose a fully automated approach (DeepCryoPicker) for single particle picking based on deep learning. It first uses automated unsupervised learning to generate particle training datasets. Then it trains a deep neural network to classify particles automatically. Results indicate that the DeepCryoPicker compares favorably with semi-automated methods such as DeepEM, DeepPicker, and RELION, with the significant advantage of not requiring human intervention. Conclusions Our framework combing supervised deep learning classification with automated un-supervised clustering for generating training data provides an effective approach to pick particles in cryo-EM images automatically and accurately. 
    more » « less
  2. Abstract The breakthrough in cryo-electron microscopy (cryo-EM) technology has led to an increasing number of density maps of biological macromolecules. However, constructing accurate protein complex atomic structures from cryo-EM maps remains a challenge. In this study, we extend our previously developed DEMO-EM to present DEMO-EM2, an automated method for constructing protein complex models from cryo-EM maps through an iterative assembly procedure intertwining chain- and domain-level matching and fitting for predicted chain models. The method was carefully evaluated on 27 cryo-electron tomography (cryo-ET) maps and 16 single-particle EM maps, where DEMO-EM2 models achieved an average TM-score of 0.92, outperforming those of state-of-the-art methods. The results demonstrate an efficient method that enables the rapid and reliable solution of challenging cryo-EM structure modeling problems. 
    more » « less
  3. Single particle analysis cryo-electron microscopy (EM) and molecular dynamics (MD) have been complimentary methods since cryo-EM was first applied to the field of structural biology. The relationship started by biasing structural models to fit low-resolution cryo-EM maps of large macromolecular complexes not amenable to crystallization. The connection between cryo-EM and MD evolved as cryo-EM maps improved in resolution, allowing advanced sampling algorithms to simultaneously refine backbone and sidechains. Moving beyond a single static snapshot, modern inferencing approaches integrate cryo-EM and MD to generate structural ensembles from cryo-EM map data or directly from the particle images themselves. We summarize the recent history of MD innovations in the area of cryo-EM modeling. The merits for the myriad of MD based cryo-EM modeling methods are discussed, as well as, the discoveries that were made possible by the integration of molecular modeling with cryo-EM. Lastly, current challenges and potential opportunities are reviewed. 
    more » « less
  4. Abstract Single-particle cryogenic electron microscopy (cryo-EM) is an imaging technique capable of recovering the high-resolution three-dimensional (3D) structure of biological macromolecules from many noisy and randomly oriented projection images. One notable approach to 3D reconstruction, known as Kam’s method, relies on the moments of the two-dimensional (2D) images. Inspired by Kam’s method, we introduce a rotationally invariant metric between two molecular structures, which does not require 3D alignment. Further, we introduce a metric between a stack of projection images and a molecular structure, which is invariant to rotations and reflections and does not require performing 3D reconstruction. Additionally, the latter metric does not assume a uniform distribution of viewing angles. We demonstrate the uses of the new metrics on synthetic and experimental datasets, highlighting their ability to measure structural similarity. 
    more » « less
  5. Abstract A primary reason for the intense interest in structural biology is the fact that knowledge of structure can elucidate macromolecular functions in living organisms. Sustained effort has resulted in an impressive arsenal of tools for determining the static structures. But under physiological conditions, macromolecules undergo continuous conformational changes, a subset of which are functionally important. Techniques for capturing the continuous conformational changes underlying function are essential for further progress. Here, we present chemically-detailed conformational movies of biological function, extracted data-analytically from experimental single-particle cryo-electron microscopy (cryo-EM) snapshots of ryanodine receptor type 1 (RyR1), a calcium-activated calcium channel engaged in the binding of ligands. The functional motions differ substantially from those inferred from static structures in the nature of conformationally active structural domains, the sequence and extent of conformational motions, and the way allosteric signals are transduced within and between domains. Our approach highlights the importance of combining experiment, advanced data analysis, and molecular simulations. 
    more » « less