skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling estimates of agricultural and natural soil nitrous oxide emissions across the contiguous United States: Annual time-series gridded database during 1900-2019
This dataset includes the time-series maps of the model-estimated N2</sub>O emissions, covering the lower U.S. spanning from 1900 to 2019.  more » « less
Award ID(s):
1903722 1945036
PAR ID:
10336602
Author(s) / Creator(s):
; ;
Publisher / Repository:
figshare
Date Published:
Subject(s) / Keyword(s):
Environmental Science
Format(s):
Medium: X Size: 134650813 Bytes
Size(s):
134650813 Bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. The structures of a series of 2:1 cocrystals formed between 4-(dimethylamino)pyridine and each of 1,2,4,5-tetrachloro-3,6-diiodobenzene, 2C7H10N2·C6Cl4I2, 1,2,4,5-tetrabromo-3,6-diiodobenzene, 2C7H10N2·C6Br4I2, 1-bromo-4-iodo-2,3,5,6-tetrafluorobenzene, 2C7H10N2·C6BrF4I, and 1,2-dibromo-4,5-difluoro-3,6-diiodobenzene, 2C7H10N2·C6Br2F2I2, are reported. In all five structures, the core halogen-bonded 2:1 trimolecular units have geometrically similar parameters, with the central halogen-bond donor flanked by two pyridine halogen-bond acceptors twisted with respect to the central halogen-bond donor at angles ranging from 76 to 86°. The I...N halogen-bond separations are all short, ranging from 73.3 to 76.7% of the sum of the van der Waals radii, while the C—I...N bond angles are essentially linear. The Br...N halogen-bond separation in the cocrystal formed with 1-bromo-4-iodo-2,3,5,6-tetrafluorobenzene is 80.4% of the sum of the van der Waals radii. Subtle differences in the crystal packings are attributed to the role of secondary C—H...π and weak π-type interactions with chloro and bromo substituents. The cocrystals 2C7H10N2·C6Cl4I2and 2C7H10N2·C6Br4I2are isomorphous. 
    more » « less
  2. Abstract The overarching goal of this study is to effect the elimination of platinum from adducts withcis–C≡C−Pt−C≡C‐ linkages, thereby generating novel conjugated polyynes. Thus, the bis(hexatriynyl) complextrans‐(p‐tol3P)2Pt((C≡C)3H)2is treated with 1,3‐diphosphines R2C(CH2PPh2)2to generate (R2C(CH2PPh2)2)2Pt((C≡C)3H)2(14; R=c,n‐Bu;e,p‐tolCH2). These condense with the diiodide complexes R2C(CH2PPh2)2PtI2(9 a,c) in the presence of CuI (cat.) and excess HNEt2to give the title macrocycles [(R2C(CH2PPh2)2)Pt(C≡C)3]4(16 c,e) as adducts of the byproduct [H2NEt2]+I(30–66 %). DOSY NMR experiments establish that this association is maintained in solution, but NaOAc removes the ammonium salt. The bis(triethylsilylpolyynyl) complexes (n‐Bu2C(CH2PPh2)2)Pt((C≡C)nSiEt3)2(n=2, 3) are synthesized analogously to14 c. They react with I2at rt to give mainly the diiodide complex9 cand the coupling product Et3Si(C≡CC≡C)nSiEt3. The possibility of competing reactions giving IC≡C species is investigated. Analogous reactions of the Pt4C24macrocycle16 calso give9 c, but no sp13C NMR signals or mass spectrometric Cxz+ions (x=24–100) could be detected. It is proposed that some cyclo[24]carbon is generated, but then rapidly converts to other forms of elemental carbon. No cyclotetracosane (C24H48) is detected when this sequence is carried out in the presence of PtO2and H2
    more » « less
  3. Abstract High‐temperature, high‐velocity water vapor (steam‐jet) exposures were conducted on Y2O3, Y2SiO5, Y2Si2O7, and SiO2for 60 hours at 1400°C. Volatility of Y2O3was not observed. Phase‐pure Y2SiO5exhibited SiO2loss forming Y2O3and porosity. A mixed porous and dense Y2SiO5layer formed on the surface of Y2Si2O7due to SiO2depletion. The mechanisms and kinetics of the reaction between SiO2and H2O(g) to form Si(OH)4(g) from Y2SiO5, Y2Si2O7, and SiO2are discussed. 
    more » « less
  4. The electrical properties of the entropy stabilized oxides: Zr6Nb2O17, Zr6Ta2O17, Hf6Nb2O17and Hf6Ta2O17were characterized. The results and the electrical properties of the products (i.e. ZrO2, HfO2, Nb2O5and Ta2O5) led us to hypothesize the A6B2O17family is a series of mixed ionic-electronic conductors. Conductivity measurements in varying oxygen partial pressure were performed on A6Nb2O17and A6Ta2O17.The results indicate that electrons are involved in conduction in A6Nb2O17while holes play a role in conduction of A6Ta2O17. Between 900 °C–950 °C, the charge transport in the A6B2O17system increases in Ar atmosphere. A combination of DTA/DSC and in situ high temperature X-ray diffraction was performed to identify a potential mechanism for this increase. In-situ high temperature X-ray diffraction in Ar does not show any phase transformation. Based on this, it is hypothesized that a change in the oxygen sub-lattice is the cause for the shift in high temperature conduction above 900 °C–950 °C. This could be:(i)Nb(Ta)4+- oxygen vacancy associate formation/dissociation,(ii)formation of oxygen/oxygen vacancy complexes(iii)ordering/disordering of oxygen vacancies and/or(iv)oxygen-based superstructure commensurate or incommensurate transitions. In-situ high temperature neutron diffraction up to 1050 °C is required to help elucidate the origins of this large increase in conductivity. 
    more » « less
  5. Abstract The solid‐state synthesis of perovskite BiFeO3has been a topic of interest for decades. Many studies have reported challenges in the synthesis of BiFeO3from starting oxides of Bi2O3and Fe2O3, mainly associated with the development of persistent secondary phases such as Bi25FeO39(sillenite) and Bi2Fe4O9(mullite). These secondary phases are thought to be a consequence of unreacted Fe‐rich and Bi‐rich regions, that is, incomplete interdiffusion. In the present work, in situ high‐temperature X‐ray diffraction is used to demonstrate that Bi2O3first reacts with Fe2O3to form sillenite Bi25FeO39, which then reacts with the remaining Fe2O3to form BiFeO3. Therefore, the synthesis of perovskite BiFeO3is shown to occur via a two‐step reaction sequence with Bi25FeO39as an intermediate compound. Because Bi25FeO39and the γ‐Bi2O3phase are isostructural, it is difficult to discriminate them solely from X‐ray diffraction. Evidence is presented for the existence of the intermediate sillenite Bi25FeO39using quenching experiments, comparisons between Bi2O3behavior by itself and in the presence of Fe2O3, and crystal structure examination. With this new information, a proposed reaction pathway from the starting oxides to the product is presented. 
    more » « less