Photoelectrochemical (PEC) water splitting is a promising technology for green hydrogen production by harnessing solar energy. Traditionally, this sustainable approach is studied under light intensity of 100 mW/cm2mimicking the natural solar irradiation at the Earth’s surface. Sunlight can be easily concentrated using simple optical systems like Fresnel lens to enhance charge carrier generation and hydrogen production in PEC water splitting. Despite the great potentials, this strategy has not been extensively studied and faces challenges related to the stability of photoelectrodes. To prompt the investigations and applications, this work outlines the best practices and protocols for conducting PEC solar water splitting under concentrated sunlight illumination, incorporating our recent advancements and providing some experimental guidelines. The key factors such as light source calibration, photoelectrode preparation, PEC cell configuration, and long-term stability test are discussed to ensure reproducible and high performance. Additionally, the challenges of the expected photothermal effect and the heat energy utilization strategy are discussed.
more »
« less
Comprehensive Evaluation for Protective Coatings: Optical, Electrical, Photoelectrochemical, and Spectroscopic Characterizations
Numerous efficient semiconductors suffer from instability in aqueous electrolytes. Strategies utilizing protective coatings have thus been developed to protect these photoabsorbers against corrosion while synergistically improving charge separation and reaction kinetics. Recently, various photoelectrochemical (PEC) protective coatings have been reported with suitable electronic properties to ensure low charge transport loss and reveal the fundamental photoabsorber efficiency. However, protocols for studying the critical figures of merit for protective coatings have yet to be established. For this reason, we propose four criteria for evaluating the performance of a protective coating for PEC water-splitting: stability, conductivity, optical transparency, and energetic matching. We then propose a flow chart that summarizes the recommended testing protocols for quantifying these four performance metrics. In particular, we lay out the stepwise testing protocols to evaluate the energetics matching at a semiconductor/coating/(catalyst)/liquid interface. Finally, we provide an outlook for the future benchmarking needs for coatings.
more »
« less
- Award ID(s):
- 2055416
- PAR ID:
- 10336623
- Date Published:
- Journal Name:
- Frontiers in Energy Research
- Volume:
- 9
- ISSN:
- 2296-598X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A plasma electrolytic oxidation (PEO) is an electrochemical and eco-friendly process where the surface features of the metal substrate are changed remarkably by electrochemical reactions accompanied by plasma micro-discharges. A stiff, adhesive, and conformal oxide layer on the Zr and Zr-alloy substrates can be formed by applying the PEO process. The review describes recent progress on various applications and functionality of PEO coatings in light of increasing industrial, medical, and optoelectronic demands for the production of advanced coatings. Besides, it explains how the PEO coating can address concerns about employing protective and long-lasting coatings with a remarkable biocompatibility and a broad excitation and absorption range of photoluminescence. A general overview of the process parameters of coatings is provided, accompanied by some information related to the biological conditions, under which, coatings are expected to function. The focus is to explain how the biocompatibility of coatings can be improved by tailoring the coating process. After that, corrosion and wear performance of PEO coatings are described in light of recognizing parameters that lead to the formation of coatings with outstanding performance in extreme loading conditions and corrosive environments. Finally, a future outlook and suggested research areas are outlined. The emerging applications derived from paramount features of the coating are considered in light of practical properties of coatings in areas including biocompatibility and bioactivity, corrosion and wear protection, and photoluminescence of coatingsmore » « less
-
This study explores, through a full factorial experimental design, the effects of graphite concentration and spray flow rate on the morphology, thickness, and tribological performance of graphite coatings for potential tribological applications. Coatings were applied to rough substrates using varying concentrations and flow rates, followed by analysis of their morphological characteristics, roughness, thickness, coefficient of friction (COF), and wear behavior. The results revealed distinct differences in the coating morphology based on flow rate, with low-flow-rate coatings exhibiting a porous structure and higher roughness, while high-flow-rate coatings displayed denser structures with lower roughness. A COF as low as 0.09 was achieved, which represented an 86% reduction compared to uncoated steel. COF and wear track measurements showed that thickness was influential in determining friction and the extent of wear. Flow rate dictated the coating structure, quantity of transfer film on the ball, and the extent of graphite compaction in the wear track to provide a protective layer. SEM and elemental analysis further revealed that graphite coatings provided effective protection against wear, with graphite remaining embedded in the innermost crevices of the wear track. Low flow rates may be preferable for applications requiring higher roughness and porosity, while high flow rates offer advantages in achieving denser coatings and better wear resistance. Overall, this study highlights the importance of optimizing graphite concentration and spray flow rate to tailor coating morphology, thickness, and tribological performance for practical applications.more » « less
-
This study examined the influence of laboratory corrosion testing methods, specifically salt spray, and immersion tests, on the long-term performance assessment of wire-arc-sprayed Zn-Al coatings. Two Zn-Al alloyed systems, Zn-15Al and Zn-Al pseudo-alloy, were selected for investigation, subjecting them to 1000 h of immersion and salt spray conditions. Electrochemical impedance spectroscopy was used to monitor corrosion progression in both coating systems at 200-h intervals. Post-exposure, the coatings underwent microstructural and chemical characterization, along with potentiodynamic polarization tests. Furthermore, some specimens in both coating systems were intentionally damaged and exposed to 1000 h of salt spray and immersion testing and analyzed with scanning electron microscopy. Immersion testing yielded similar results for both coatings, while salt spray testing unveiled significant differences and highlighted the susceptibility of the Zn-15Al to salt spray in both undamaged and damaged states. The continuously refreshed salt spray electrolyte hindered stable corrosion product formation, allowing chloride penetration and increased corrosion in Zn-15Al. Conversely, the Zn-Al pseudo-alloy coating formed Al (OH)3, acting as a barrier against chloride penetration during salt spray and offering superior protection. In summary, salt spray testing proved more aggressive than immersion when evaluating Zn-Al coatings with high zinc content primarily relying on active dissolution for corrosion protection.more » « less
-
This study explores conducting polymers with side chains containing long, branched alkyl groups as candidates for corrosion suppression coatings. These polymers, containing carbazole, phenothiazine, and phenoxazine cores, may be considered as analogues to polyaniline, which is often employed in corrosion control applications. The polymers are prepared from the corresponding dibrominated carbazole, phenothiazine, and phenoxazine monomers with 2,5-dimethyl-1,4-phenylenediamine by the Buchwald−Hartwig coupling reaction. The effectiveness of these coatings for corrosion suppression was tested by potentiodynamic polarization studies and electrochemical impedance spectroscopy. The morphology of the coatings was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Corrosion testing of coated AISI 4130 steels in 3.5 wt % NaCl showed that the phenothiazine- and carbazole-containing polymers display excellent corrosion resistance. The protection efficiency (PE) of 95.9% for phenothiazine outperformed the other polymers, including polyaniline coating. SEM images indicate that the polymers are still uniformly coated with stable morphology after 24 h of exposure to corrosive media. These results suggest that phenothiazine and carbazole-based PANI analogues may be candidates for protective organic coatings in transportation, aviation, marine, and oil and gas industrial applications.more » « less
An official website of the United States government

