skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 25, 2026

Title: Photoelectrochemical water splitting under concentrated sunlight: best practices and protocols
Photoelectrochemical (PEC) water splitting is a promising technology for green hydrogen production by harnessing solar energy. Traditionally, this sustainable approach is studied under light intensity of 100 mW/cm2mimicking the natural solar irradiation at the Earth’s surface. Sunlight can be easily concentrated using simple optical systems like Fresnel lens to enhance charge carrier generation and hydrogen production in PEC water splitting. Despite the great potentials, this strategy has not been extensively studied and faces challenges related to the stability of photoelectrodes. To prompt the investigations and applications, this work outlines the best practices and protocols for conducting PEC solar water splitting under concentrated sunlight illumination, incorporating our recent advancements and providing some experimental guidelines. The key factors such as light source calibration, photoelectrode preparation, PEC cell configuration, and long-term stability test are discussed to ensure reproducible and high performance. Additionally, the challenges of the expected photothermal effect and the heat energy utilization strategy are discussed.  more » « less
Award ID(s):
2330525
PAR ID:
10640040
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Energy Research
Volume:
13
ISSN:
2296-598X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photoelectrochemical (PEC) hydrogen generation is a promising solar energy harvesting technique to address the concerns about the ongoing energy crisis. Antimony selenide (Sb2Se3) with van der Waals‐bonded quasi‐1D (Q1D) nanoribbons, for instance, (Sb4Se6)n, has attracted considerable interest as a light absorber with Earth‐abundant elements, suitable bandgap, and a desired sunlight absorption coefficient. By tuning its anisotropic growth behavior, it is possible to achieve Sb2Se3films with nanostructured morphologies that can improve the light absorption and photogenerated charge carrier separation, eventually boosting the PEC water‐splitting performance. Herein, high‐quality Sb2Se3films with nanorod (NR) array surface morphologies are synthesized by a low‐cost, high‐yield, and scalable close‐spaced sublimation technique. By sputtering a nonprecious and scalable crystalline molybdenum sulfide (MoS2) film as a cocatalyst and a protective layer on Sb2Se3NR arrays, the fabricated core–shell structured MoS2/Sb2Se3NR PEC devices can achieve a photocurrent density as high as −10 mA cm−2at 0 VRHEin a buffered near‐neutral solution (pH 6.5) under a standard simulated air mass 1.5 solar illumination. The scalable manufacturing of nanostructured MoS2/Sb2Se3NR array thin‐film photocathode electrodes for efficient PEC water splitting to generate solar fuel is demonstrated. 
    more » « less
  2. Metal–insulator–semiconductor/MIS-based photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. 
    more » « less
  3. Abstract Aqueous photoelectrochemical (PEC) cells have long been considered a promising technology to convert solar energy into hydrogen. However, the solar‐to‐H 2 (STH) efficiency and cost‐effectiveness of PEC water splitting are significantly limited by sluggish oxygen evolution reaction (OER) kinetics and the low economic value of the produced O 2 , hindering the practical commercialization of PEC cells. Recently, organic upgrading PEC reactions, especially for alternative OERs, have received tremendous attention, which improves not only the STH efficiency but also the economic effectiveness of the overall reaction. In this review, PEC reaction fundamentals and reactant‐product cost analysis of organic upgrading reactions are briefly reviewed, recent advances made in organic upgrading reactions, which are categorized by their reactant substrates, such as methanol, ethanol, glycol, glycerol, and complex hydrocarbons, are then summarized and discussed. Finally, the current status, further outlooks, and challenges toward industrial applications are discussed. 
    more » « less
  4. Abstract Photo‐electrochemistry is the major trajectory for directly transforming solar energy into chemical compounds. The performance of a photo‐electrochemical (PEC) system is directly related to the interfacial electrical band energy landscape. Recently, piezotronics has stood out as a promising strategy for tuning interfacial energetics. It applies intrinsic or deformation‐induced ionic displacements (ferroelectric and piezoelectric polarizations) to engineer the interfacial charge distribution, and thereby the band structures of PEC electrodes. Here, contemporary research efforts of coupling piezotronics with photo‐electrochemisty are reviewed. Quantitative band diagrams of a polarization‐tuned semiconductor–electrolyte junction are first introduced, with an emphasis on the impact of interface chemistry. Experimental advances of employing piezoelectric and ferroelectric polarizations to enhance the charge separation and transportation, and surface kinetics of PEC water splitting are discussed. Finally, critical challenges of applying piezotronics in PEC systems and promising solutions are presented. 
    more » « less
  5. Solar-powered water electrolysis holds significant promise for the mass production of green hydrogen. However, the substantial water consumption associated with electrolysis not only increases the cost of green hydrogen but also raises critical concerns about accelerating water scarcity. Although seawater can serve as an infinite water supply for green hydrogen production, its complex composition poses substantial challenges to efficient and reliable electrolysis. Here, we demonstrate a high-efficiency solar-powered green hydrogen production from seawater. Our approach takes advantage of the full-spectrum utilization of solar energy. Photovoltaic electricity is used to drive the electrolysis, whereas the waste heat from solar cells is harnessed to produce clean water through seawater distillation. With natural sunlight and real seawater as the sole inputs, we experimentally demonstrate a 12.6% solar-to-hydrogen conversion efficiency and a 35.9 L m−2 h−1 production rate of green hydrogen under one-sun illumination, where additional 1.2 L m−2 h−1 clean water is obtained as a byproduct. By reducing reliance on clean water and electricity supplies, this work provides a fully sustainable strategy to access green hydrogen with favorable energy efficiency and technoeconomic feasibility. 
    more » « less