skip to main content


Title: Secondary brown carbon from photooxidation of 1-methylnaphthalene and longifolene
An improved understanding of the optical properties of secondary organic aerosol (SOA) particles is needed to better predict their climate impacts. Here, SOA was produced by reacting 1-methylnaphthalene or longifolene with hydroxyl radicals (OH) under variable ammonia (NH3), nitrogen oxide (NOx), and relative humidity (RH) conditions. In the presence of NH3 and NOx, longifolene-derived aerosols had relatively high single scattering albedo (SSA) values and low absorption coefficients at 375 nm independent of RH, suggesting that the longifolene SOA is mostly scattering. In 1-methylnaphthalene experiments, the resulting SSA and SOA mass absorption coefficient (MACorg) values suggest the formation of light-absorbing SOA, and the addition of high NOx and high NH3 enhanced the SOA absorption. Under intermediate-NOx dry conditions, the MACorg values increased from 0.13 m2 g−1 in NH3-free conditions to 0.28 m2 g−1 in high-NH3 conditions. Under high-NH3 conditions, the MACorg value further increased to 0.36 m2 g−1 with an increase in RH. Under dry high-NOx conditions, the MACorg value increased from 0.42 to 0.67 m2 g−1 with the addition of NH3, while with elevated RH, the MACorg value reached 0.70 m2 g−1. The time series of MACorg showed increasing trends only in the presence of NH3. Composition analysis of SOA suggests that organonitrates, nitroorganics, and other nitrogen-containing organic compounds (NOCs) are potential chromophores in the 1-methylnaphthalene SOA. Significant formation of NOCs was observed in the presence of high-NOx and NH3 and was enhanced under elevated RH. The data have been collected in an environmental chamber, oxidizing 30-100 ppbv of 1-methylnaphthalene and 70-100 ppbv of longifolene under different levels of nitrogen oxides, ammonia, and relative humidity. Microphysical properties (size distribution and absorption and scattering coefficients) of SOA along with its composition were monitored throughout the experiment. Submitted data include the time series of the calculated mass absorption coefficient and single scattering albedo at 375 nm, derived real and imaginary components of the refractive index, organic nitrate to organic ratio, and organic and nitrate mass concentrations. The data have been analyzed using Wavemetrics Igor Pro, specifically the software written specifically to analyze the data obtained from Aerodyne's aerosol mass spectrometers (i.e., Squirrel and Pika). Other calculations were also carried out in Igor Pro. More details are provided in the related manuscripts. Please see README file.  more » « less
Award ID(s):
1454374
NSF-PAR ID:
10336631
Author(s) / Creator(s):
Publisher / Repository:
Dryad
Date Published:
Edition / Version:
5
Subject(s) / Keyword(s):
["1-methylnaphthalene photooxidation","Secondary brown carbon","ammonia","nitrogen oxide","optical properties","longifolene","FOS: Earth and related environmental sciences"]
Format(s):
Medium: X Size: 72022 bytes
Size(s):
["72022 bytes"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Despite the potential importance of black carbon (BC) for radiative forcing of the Arctic atmosphere, vertically resolved measurements of the particle light scattering coefficient (σsp) and light absorption coefficient (σap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80∘ N. Here, relationships among vertically distributed aerosol optical properties (σap, σsp and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9 and 83.4∘ N from near the surface to 500 hPa. Airborne data collected during April 2015 are combined with ground-based observations from the observatory at Alert, Nunavut and simulations from the Goddard Earth Observing System (GEOS) model, GEOS-Chem, coupled with the TwO-Moment Aerosol Sectional (TOMAS) model (collectively GEOS-Chem–TOMAS; Kodros et al., 2018) to further our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for σsp less than 15 Mm−1, which represent 98 % of the observed σsp, because the single scattering albedo (SSA) has a tendency to be lower at lower σsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g−1, the average BC mass absorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two averaged modelled MAC values (13.6 and 9.1 m2 g−1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC, the presence of small amounts of dust and/or possible differences in BC microphysics and morphologies between the observations and model. In comparing the observations and simulations, we present σap and SSA, as measured, and σap∕2 and the corresponding SSA to encompass the lower modelled MAC that is more consistent with accepted MAC values. Median values of the measured σap, rBC and the organic component of particles all increase by a factor of 1.8±0.1, going from near-surface to 750 hPa, and values higher than the surface persist to 600 hPa. Modelled BC, organics and σap agree with the near-surface measurements but do not reproduce the higher values observed between 900 and 600 hPa. The differences between modelled and observed optical properties follow the same trend as the differences between the modelled and observed concentrations of the carbonaceous components (black and organic). Model-observation discrepancies may be mostly due to the modelled ejection of biomass burning particles only into the boundary layer at the sources. For the assumption of the observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of σsp<15 Mm−1. The large uncertainties in measuring optical properties and BC, and the large differences between measured and modelled values here and in the literature, argue for improved measurements of BC and light absorption by BC and more vertical profiles of aerosol chemistry, microphysics and other optical properties in the Arctic. 
    more » « less
  2. Abstract

    Furans are a major class of volatile organic compounds emitted from biomass burning. Their high reactivity with atmospheric oxidants leads to the formation of secondary organic aerosol (SOA), including secondary brown carbon (BrC) that can affect global climate via interactions with solar radiation. Here, we investigate the optical properties and chemical composition of SOA generated via photooxidation of furfural, 2‐methylfuran, and 3‐methylfuran under dry (RH < 5%) and humid (RH ∼ 50%) conditions in the presence of nitrogen oxides (NOx) and ammonium sulfate seed aerosol. Dry furfural oxidation has the greatest BrC formation, including reduced nitrogen‐containing organic compounds (NOCs) in SOA, which are dominated by amines and amides formed from reactions between carbonyls and ammonia/ammonium. Based on the products detected, we propose novel formation pathways of NOCs in furfural photooxidation, which can contribute to BrC via accretion reactions during the photochemical aging of biomass burning plumes.

     
    more » « less
  3. Ion exchange is widely used to treat nitrate-contaminated groundwater, but high salt usage for resin regeneration and management of waste brine residuals increase treatment costs and add environmental burdens. Development of palladium-based catalytic nitrate treatment systems for brine treatment and reuse has showed promising activity for nitrate reduction and selectivity towards the N2 over the alternative product ammonia, but this strategy overlooks the potential value of nitrogen resources. Here, we evaluated a hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery during treatment and reuse of nitrate-contaminated waste ion exchange brines. In the first step of the hybrid process, a Ru/C catalyst with high selectivity towards ammonia was found to be effective for nitrate hydrogenation under conditions representative of waste brines, including expected salt buildup that would occur with repeated brine reuse cycles. The apparent rate constants normalized to metal mass (0.30 ± 0.03 mM min−1 gRu−1 under baseline condition) were comparable to the state-of-the-art bimetallic Pd catalyst. In the second stage of the hybrid process, membrane distillation was applied to recover the ammonia product from the brine matrix, capturing nitrogen as ammonium sulfate, a commercial fertilizer product. Solution pH significantly influenced the rate of ammonia mass transfer through the gas-permeable membrane by controlling the fraction of free ammonia species (NH3) present in the solution. The rate of ammonia recovery was not affected by increasing salt levels in the brine, indicating the feasibility of membrane distillation for recovering ammonia over repeated reuse cycles. Finally, high rates of nitrate hydrogenation (apparent rate constant 1.80 ± 0.04 mM min−1 gRu−1) and ammonia recovery (overall mass transfer coefficient 0.20 m h−1) with the hybrid treatment process were demonstrated when treating a real waste ion exchange brine obtained from a drinking water utility. These findings introduce an innovative strategy for recycling waste ion exchange brine while simultaneously recovering potentially valuable nitrogen resources when treating contaminated groundwater. 
    more » « less
  4. Abstract. Secondary organic aerosol (SOA) generated from the photooxidationof aromatic compounds in the presence of oxides of nitrogen (NOx) isknown to efficiently absorb ultraviolet and visible radiation. With exposureto sunlight, the photodegradation of chromophoric compounds in the SOAcauses this type of SOA to slowly photobleach. These photodegradationreactions may occur in cloud droplets, which are characterized by lowconcentrations of solutes, or in aerosol particles, which can have highlyviscous organic phases and aqueous phases with high concentrations ofinorganic salts. To investigate the effects of the surrounding matrix on therates and mechanisms of photodegradation of SOA compounds, SOA was preparedin a smog chamber by photooxidation of toluene in the presence of NOx.The collected SOA was photolyzed for up to 24 h using near-UV radiation(300–400 nm) from a xenon arc lamp under different conditions: directly onthe filter, dissolved in pure water, and dissolved in 1 M ammonium sulfate.The SOA mass absorption coefficient was measured as a function ofirradiation time to determine photobleaching rates. Electrospray ionizationhigh-resolution mass spectrometry coupled to liquid chromatographyseparation was used to observe changes in SOA composition resulting from theirradiation. The rate of decrease in SOA mass absorption coefficient due tophotobleaching was the fastest in water, with the presence of 1 M ammoniumsulfate modestly slowing down the photobleaching. By contrast,photobleaching directly on the filter was slower. The high-resolutionmass spectrometry analysis revealed an efficient photodegradation ofnitrophenol compounds on the filter but not in the aqueous phases, withrelatively little change observed in the composition of the SOA irradiatedin water or 1 M ammonium sulfate despite faster photobleaching than in theon-filter samples. This suggests that photodegradation of nitrophenolscontributes much more significantly to photobleaching in the organic phasethan in the aqueous phase. We conclude that the SOA absorption coefficientlifetime with respect to photobleaching and lifetimes of individualchromophores in SOA with respect to photodegradation will depend strongly onthe sample matrix in which SOA compounds are exposed to sunlight. 
    more » « less
  5. null (Ed.)
    Abstract. During the first phase of the Biomass Burn Operational Project (BBOP) fieldcampaign, conducted in the Pacific Northwest, the DOE G-1 aircraft was usedto follow the time evolution of wildfire smoke from near the point ofemission to locations 2–3.5 h downwind. In nine flights we maderepeated transects of wildfire plumes at varying downwind distances andcould thereby follow the plume's time evolution. On average there was littlechange in dilution-normalized aerosol mass concentration as a function ofdownwind distance. This consistency hides a dynamic system in which primaryaerosol particles are evaporating and secondary ones condensing. Organicaerosol is oxidized as a result. On all transects more than 90 % ofaerosol is organic. In freshly emitted smoke aerosol, NH4+ isapproximately equivalent to NO3. After 2 h of daytime aging, NH4+ increased and is approximately equivalent tothe sum of Cl, SO42, and NO3. Particle size increased with downwind distance,causing particles to be more efficient scatters. Averaged over nine flights,mass scattering efficiency (MSE) increased in ∼ 2 h by 56 % and doubled in one flight. Mechanisms for redistributing mass from small to large particles are discussed. Coagulation is effective at movingaerosol from the Aitken to accumulation modes but yields only a minor increase in MSE. As absorption remained nearly constant with age, the timeevolution of single scatter albedo was controlled by age-dependentscattering. Near-fire aerosol had a single scatter albedo (SSA) of 0.8–0.9. After 1 to 2 h of aging SSAs were typically 0.9 and greater. Assuming global-average surface and atmospheric conditions, the observedage dependence in SSA would change the direct radiative effect of a wildfire plume from near zero near the fire to a cooling effect downwind. 
    more » « less