skip to main content


Title: Characterization of Two Novel Toti-Like Viruses Co-infecting the Atlantic Blue Crab, Callinectes sapidus, in Its Northern Range of the United States
The advancement of high throughput sequencing has greatly facilitated the exploration of viruses that infect marine hosts. For example, a number of putative virus genomes belonging to the Totiviridae family have been described in crustacean hosts. However, there has been no characterization of the most newly discovered putative viruses beyond description of their genomes. In this study, two novel double-stranded RNA (dsRNA) virus genomes were discovered in the Atlantic blue crab ( Callinectes sapidus ) and further investigated. Sequencing of both virus genomes revealed that they each encode RNA dependent RNA polymerase proteins (RdRps) with similarities to toti-like viruses. The viruses were tentatively named Callinectes sapidus toti-like virus 1 (CsTLV1) and Callinectes sapidus toti-like virus 2 (CsTLV2). Both genomes have typical elements required for −1 ribosomal frameshifting, which may induce the expression of an encoded ORF1–ORF2 (gag-pol) fusion protein. Phylogenetic analyses of CsTLV1 and CsTLV2 RdRp amino acid sequences suggested that they are members of two new genera in the family Totiviridae . The CsTLV1 and CsTLV2 genomes were detected in muscle, gill, and hepatopancreas of blue crabs by real-time reverse transcription quantitative PCR (RT-qPCR). The presence of ~40 nm totivirus-like viral particles in all three tissues was verified by transmission electron microscopy, and pathology associated with CsTLV1 and CsTLV2 infections were observed by histology. PCR assays showed the prevalence and geographic range of these viruses, to be restricted to the northeast United States sites sampled. The two virus genomes co-occurred in almost all cases, with the CsTLV2 genome being found on its own in 8.5% cases, and the CsTLV1 genome not yet found on its own. To our knowledge, this is the first report of toti-like viruses in C. sapidus . The information reported here provides the knowledge and tools to investigate transmission and potential pathogenicity of these viruses.  more » « less
Award ID(s):
1658466
NSF-PAR ID:
10336675
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
13
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The movement of viruses in aquatic systems is rarely studied over large geographic scales. Oceanic currents, host migration, latitude-based variation in climate, and resulting changes in host life history are all potential drivers of virus connectivity, adaptation, and genetic structure. To expand our understanding of the genetic diversity of Callinectes sapidus reovirus 1 (CsRV1) across a broad spatial and host life history range of its blue crab host (Callinectes sapidus), we obtained 22 complete and 96 partial genomic sequences for CsRV1 strains from the US Atlantic coast, Gulf of Mexico, Caribbean Sea, and the Atlantic coast of South America. Phylogenetic analyses of CsRV1 genomes revealed that virus genotypes were divided into four major genogroups consistent with their host geographic origins. However, some CsRV1 sequences from the US mid-Atlantic shared high genetic similarity with the Gulf of Mexico genotypes, suggesting potential human-mediated movement of CsRV1 between the US mid-Atlantic and Gulf coasts. This study advances our understanding of how climate, coastal geography, host life history, and human activity drive patterns of genetic structure and diversity of viruses in marine animals and contributes to the capacity to infer broadscale host population connectivity in marine ecosystems from virus population genetic data. 
    more » « less
  2. null (Ed.)
    The blue crab, Callinectes sapidus (Rathbun, 1896) is an economically, culturally, and ecologically important species found across the temperate and tropical North and South American Atlantic coast. A reference genome will enable research for this high-value species. Initial assembly combined 200× coverage Illumina paired-end reads, a 60× 8 kb mate-paired library, and 50× PacBio data using the MaSuRCA assembler resulting in a 985 Mb assembly with a scaffold N50 of 153 kb. Dovetail Chicago and HiC sequencing with the 3d DNA assembler and Juicebox assembly tools were then used for chromosome scaffolding. The 50 largest scaffolds span 810 Mb are 1.5–37 Mb long and have a repeat content of 36%. The 190 Mb unplaced sequence is in 3921 sequences over 10 kb with a repeat content of 68%. The final assembly N50 is 18.9 Mb for scaffolds and 9317 bases for contigs. Of arthropod BUSCO, ∼88% (888/1013) were complete and single copies. Using 309 million RNAseq read pairs from 12 different tissues and developmental stages, 25,249 protein-coding genes were predicted. Between C. sapidus and Portunus trituberculatus genomes, 41 of 50 large scaffolds had high nucleotide identity and protein-coding synteny, but 9 scaffolds in both assemblies were not clear matches. The protein-coding genes included 9423 one-to-one putative orthologs, of which 7165 were syntenic between the two crab species. Overall, the two crab genome assemblies show strong similarities at the nucleotide, protein, and chromosome level and verify the blue crab genome as an excellent reference for this important seafood species. 
    more » « less
  3. The blue crab Callinectes sapidus is one of the most widely studied marine crustaceans due to its high economic value and ecological significance. Despite extensive research on the blue crab in North America, many questions remain about the distribution and abundance of the species in the subtropics and tropics. In many places, C. sapidus is sympatric with morphologically similar Callinectes spp., which has implications for seafood mislabeling. To enable rapid identification of the species, we designed and tested two PCR-based assays targeting the 12S rRNA mitochondrial gene. The first assay discriminates C. sapidus from other Callinectes spp. via post-PCR restriction digestion (PCR-RFLP) and the second assay discriminates among multiple Callinectes spp. through High Resolution Melting (HRM) analysis and supervised machine learning analyses. A total of 58 DNA samples from five Callinectes spp. (validated via 12S gene sequencing) were used for assay testing. The PCR RFLP assay was 100% accurate identifying C. sapidus from other Callinectes spp. HRM analysis of amplicons showed good discrimination among species, with distinct clusters formed between species with higher sequence homology. Linear discriminant analysis (LDA) classification of HRM curves was quite successful given the small dataset available, producing ∼90–91% mean accuracy in classification over all species with 100-fold cross validation. Much of the error came from misclassifications between C. similis and C. danae, which are ∼99% similar in sequence for the amplicon; collapsing them into a single class increased overall classification success to 94%. Error also arose from C. bocourti classifications, which had a reference set containing only three samples. Classification accuracy of C. sapidus alone via HRM was 97.5%. Overall, these assays show great promise as rapid and inexpensive methods to identify Callinectes spp. and have application for both ecological research and seafood identification or labeling. 
    more » « less
  4. Abstract Background

    Insects are an important reservoir of viral biodiversity, but the vast majority of viruses associated with insects have not been discovered. Recent studies have employed high-throughput RNA sequencing, which has led to rapid advances in our understanding of insect viral diversity. However, insect genomes frequently contain transcribed endogenous viral elements (EVEs) with significant homology to exogenous viruses, complicating the use of RNAseq for viral discovery.

    Methods

    In this study, we used a multi-pronged sequencing approach to study the virome of an important agricultural pest and prolific vector of plant pathogens, the potato aphidMacrosiphum euphorbiae. We first used rRNA-depleted RNAseq to characterize the microbes found in individual insects. We then used PCR screening to measure the frequency of two heritable viruses in a local aphid population. Lastly, we generated a quality draft genome assembly forM. euphorbiaeusing Illumina-corrected Nanopore sequencing to identify transcriptionally active EVEs in the host genome.

    Results

    We found reads from two insect-specific viruses (aFlavivirusand anAmbidensovirus) in our RNAseq data, as well as a parasitoid virus (Bracovirus), a plant pathogenic virus (Tombusvirus), and two phages (Acinetobacter and APSE). However, our genome assembly showed that part of the ‘virome’ of this insect can be attributed to EVEs in the host genome.

    Conclusion

    Our work shows that EVEs have led to the misidentification of aphid viruses from RNAseq data, and we argue that this is a widespread challenge for the study of viral diversity in insects.

     
    more » « less
  5. Among the many Callinectes spp. across the western Atlantic, the blue crab C. sapidus has the broadest latitudinal distribution, encompassing both tropical and temperate climates. Its life history varies latitudinally, from extended overwintering at high latitudes to year-round activity in tropical locations. Callinectes sapidus reovirus 1 (CsRV1) is a pathogenic virus first described in North Atlantic C. sapidus and has recently been detected in southern Brazil. Little information exists about CsRV1 prevalence at intervening latitudes or in overwintering blue crabs. Using a quantitative reverse transcription PCR (RT-qPCR) method, this study investigated CsRV1 prevalence in C. sapidus across latitudinal differences in temperature and crab life history, as well as in additional Callinectes spp. and within overwintering C. sapidus . CsRV1 prevalence in C. sapidus was significantly correlated with high water temperature and blue crab winter dormancy. Prevalence of CsRV1 in C. sapidus on the mid-Atlantic coast was significantly lower in winter than in summer. CsRV1 infections were not detected in other Callinectes spp. These findings revealed that CsRV1 is present in C. sapidus across their range, but not in other Callinectes species, with prevalence associated with temperature and host life history. Such information helps us to better understand the underlying mechanisms that drive marine virus dynamics under changing environmental conditions. 
    more » « less