skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Tale of Two Regulatory Regimes: Creation and Analysis of a Bilingual Privacy Policy Corpus
Over the past decade, researchers have started to explore the use of NLP to develop tools aimed at helping the public, vendors, and regulators analyze disclosures made in privacy policies. With the introduction of new privacy regulations, the language of privacy policies is also evolving, and disclosures made by the same organization are not always the same in different languages, especially when used to communicate with users who fall under different jurisdictions. This work explores the use of language technologies to capture and analyze these differences at scale. We introduce an annotation scheme designed to capture the nuances of two new landmark privacy regulations, namely the EU’s GDPR and California’s CCPA/CPRA. We then introduce the first bilingual corpus of mobile app privacy policies consisting of 64 privacy policies in English (292K words) and 91 privacy policies in German (478K words), respectively with manual annotations for 8K and 19K fine-grained data practices. The annotations are used to develop computational methods that can automatically extract “disclosures” from privacy policies. Analysis of a subset of 59 “semi-parallel” policies reveals differences that can be attributed to different regulatory regimes, suggesting that systematic analysis of policies using automated language technologies is indeed a worthwhile endeavor.  more » « less
Award ID(s):
1914486
PAR ID:
10336685
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
LREC proceedings
ISSN:
2522-2686
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Privacy policies disclose how an organization collects and handles personal information. Recent work has made progress in leveraging natural language processing (NLP) to automate privacy policy analysis and extract data collection statements from different sentences, considered in isolation from each other. In this paper, we view and analyze, for the first time, the entire text of a privacy policy in an integrated way. In terms of methodology: (1) we define PoliGraph , a type of knowledge graph that captures statements in a privacy policy as relations between different parts of the text; and (2) we develop an NLP-based tool, PoliGraph-er , to automatically extract PoliGraph from the text. In addition, (3) we revisit the notion of ontologies, previously defined in heuristic ways, to capture subsumption relations between terms. We make a clear distinction between local and global ontologies to capture the context of individual privacy policies, application domains, and privacy laws. Using a public dataset for evaluation, we show that PoliGraph-er identifies 40% more collection statements than prior state-of-the-art, with 97% precision. In terms of applications, PoliGraph enables automated analysis of a corpus of privacy policies and allows us to: (1) reveal common patterns in the texts across different privacy policies, and (2) assess the correctness of the terms as defined within a privacy policy. We also apply PoliGraph to: (3) detect contradictions in a privacy policy, where we show false alarms by prior work, and (4) analyze the consistency of privacy policies and network traffic, where we identify significantly more clear disclosures than prior work. 
    more » « less
  2. Abstract The number and dynamic nature of web sites and mobile applications present regulators and app store operators with significant challenges when it comes to enforcing compliance with applicable privacy and data protection laws. Over the past several years, people have turned to Natural Language Processing (NLP) techniques to automate privacy compliance analysis (e.g., comparing statements in privacy policies with analysis of the code and behavior of mobile apps) and to answer people’s privacy questions. Traditionally, these NLP techniques have relied on labor-intensive and potentially error-prone manual annotation processes to build the corpora necessary to train them. This article explores and evaluates the use of Large Language Models (LLMs) as an alternative for effectively and efficiently identifying and categorizing a variety of data practice disclosures found in the text of privacy policies. Specifically, we report on the performance of ChatGPT and Llama 2, two particularly popular LLM-based tools. This includes engineering prompts and evaluating different configurations of these LLM techniques. Evaluation of the resulting techniques on well-known corpora of privacy policy annotations yields an F1 score exceeding 93%. This score is higher than scores reported earlier in the literature on these benchmarks. This performance is obtained at minimal marginal cost (excluding the cost required to train the foundational models themselves). These results, which are consistent with those reported in other domains, suggest that LLMs offer a particularly promising approach to automated privacy policy analysis at scale. 
    more » « less
  3. Data privacy, a critical human right, is gaining importance as new technologies are developed, and the old ones evolve. In mobile platforms such as Android, data privacy regulations require developers to communicate data access requests using privacy policy statements (PPS). This case study cross-examines the PPS in popular social media (SM) apps---Facebook and Twitter---for features of language ambiguity, sensitive data requests, and whether the statements tally with the data requests made in the Manifest file. Subsequently, we conduct a comparative analysis between the PPS of these two apps to examine trends that may constitute a threat to user data privacy. 
    more » « less
  4. Recent developments in online tracking make it harder for individuals to detect and block trackers. Some sites have deployed indirect tracking methods, which attempt to uniquely identify a device by asking the browser to perform a seemingly-unrelated task. One type of indirect tracking, Canvas fingerprinting, causes the browser to render a graphic recording rendering statistics as a unique identifier. In this work, we observe how indirect device fingerprinting methods are disclosed in privacy policies, and consider whether the disclosures are sufficient to enable website visitors to block the tracking methods. We compare these disclosures to the disclosure of direct fingerprinting methods on the same websites. Our case study analyzes one indirect fingerprinting technique, Canvas fingerprinting. We use an existing automated detector of this fingerprinting technique to conservatively detect its use on Alexa Top 500 websites that cater to United States consumers, and we examine the privacy policies of the resulting 28 websites. Disclosures of indirect fingerprinting vary in specificity. None described the specific methods with enough granularity to know the website used Canvas fingerprinting. Conversely, many sites did provide enough detail about usage of direct fingerprinting methods to allow a website visitor to reliably detect and block those techniques. We conclude that indirect fingerprinting methods are often difficult to detect and are not identified with specificity in privacy policies. This makes indirect fingerprinting more difficult to block, and therefore risks disturbing the tentative armistice between individuals and websites currently in place for direct fingerprinting. This paper illustrates differences in fingerprinting approaches, and explains why technologists, technology lawyers, and policymakers need to appreciate the challenges of indirect fingerprinting. 
    more » « less
  5. The development of tools and techniques to analyze and extract organizations’ data habits from privacy policies are critical for scalable regulatory compliance audits. Unfortunately, these tools are becoming increasingly limited in their ability to identify compliance issues and fixes. After all, most were developed using regulationagnostic datasets of annotated privacy policies obtained from a time before the introduction of landmark privacy regulations such as EU’s GDPR and California’s CCPA. In this paper, we describe the first open regulation-aware dataset of expert-annotated privacy policies, C3PA (CCPA Privacy Policy Provision Annotations), aimed to address this challenge. C3PA contains over 48K expert-labeled privacy policy text segments associated with responses to CCPA-specific disclosure mandates from 411 unique organizations. We demonstrate that the C3PA dataset is uniquely suited for aiding automated audits of compliance with CCPA-related disclosure mandates. 
    more » « less