skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving Crowdsourcing-Based Image Classification Through Expanded Input Elicitation and Machine Learning
This work investigates how different forms of input elicitation obtained from crowdsourcing can be utilized to improve the quality of inferred labels for image classification tasks, where an image must be labeled as either positive or negative depending on the presence/absence of a specified object. Five types of input elicitation methods are tested: binary classification (positive or negative); the ( x, y )-coordinate of the position participants believe a target object is located; level of confidence in binary response (on a scale from 0 to 100%); what participants believe the majority of the other participants' binary classification is; and participant's perceived difficulty level of the task (on a discrete scale). We design two crowdsourcing studies to test the performance of a variety of input elicitation methods and utilize data from over 300 participants. Various existing voting and machine learning (ML) methods are applied to make the best use of these inputs. In an effort to assess their performance on classification tasks of varying difficulty, a systematic synthetic image generation process is developed. Each generated image combines items from the MPEG-7 Core Experiment CE-Shape-1 Test Set into a single image using multiple parameters (e.g., density, transparency, etc.) and may or may not contain a target object. The difficulty of these images is validated by the performance of an automated image classification method. Experiment results suggest that more accurate results can be achieved with smaller training datasets when both the crowdsourced binary classification labels and the average of the self-reported confidence values in these labels are used as features for the ML classifiers. Moreover, when a relatively larger properly annotated dataset is available, in some cases augmenting these ML algorithms with the results (i.e., probability of outcome) from an automated classifier can achieve even higher performance than what can be obtained by using any one of the individual classifiers. Lastly, supplementary analysis of the collected data demonstrates that other performance metrics of interest, namely reduced false-negative rates, can be prioritized through special modifications of the proposed aggregation methods.  more » « less
Award ID(s):
1850355
PAR ID:
10336705
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Artificial Intelligence
Volume:
5
ISSN:
2624-8212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kamar, Ece; Luther, Kurt (Ed.)
    This study investigates how different forms of input elicitation obtained from crowdsourcing can be utilized to improve the quality of inferred labels for image classification tasks, where an image must be labeled as either positive or negative depending on the presence/absence of a specified object. Three types of input elicitation methods are tested: binary classification (positive or negative); level of confidence in binary response (on a scale from 0-100%); and what participants believe the majority of the other participants’ binary classification is. We design a crowdsourcing experiment to test the performance of the proposed input elicitation methods and use data from over 200 participants. Various existing voting and machine learning (ML) methods are applied and others developed to make the best use of these inputs. In an effort to assess their performance on classification tasks of varying difficulty, a systematic synthetic image generation process is developed. Each generated image combines items from the MPEG-7 Core Experiment CE-Shape-1 Test Set into a single image using multiple parameters (e.g., density, transparency, etc.) and may or may not contain a target object. The difficulty of these images is validated by the performance of an automated image classification method. Experimental results suggest that more accurate classifications can be achieved when using the average of the self-reported confidence values as an additional attribute for ML algorithms relative to what is achieved with more traditional approaches. Additionally, they demonstrate that other performance metrics of interest, namely reduced false-negative rates, can be prioritized through special modifications of the proposed aggregation methods that leverage the variety of elicited inputs. 
    more » « less
  2. In this work we explore confidence elicitation methods for crowdsourcing "soft" labels, e.g., probability estimates, to reduce the annotation costs for domains with ambiguous data. Machine learning research has shown that such "soft" labels are more informative and can reduce the data requirements when training supervised machine learning models. By reducing the number of required labels, we can reduce the costs of slow annotation processes such as audio annotation. In our experiments we evaluated three confidence elicitation methods: 1) "No Confidence" elicitation, 2) "Simple Confidence" elicitation, and 3) "Betting" mechanism for confidence elicitation, at both individual (i.e., per participant) and aggregate (i.e., crowd) levels. In addition, we evaluated the interaction between confidence elicitation methods, annotation types (binary, probability, and z-score derived probability), and "soft" versus "hard" (i.e., binarized) aggregate labels. Our results show that both confidence elicitation mechanisms result in higher annotation quality than the "No Confidence" mechanism for binary annotations at both participant and recording levels. In addition, when aggregating labels at the recording level, results indicate that we can achieve comparable results to those with 10-participant aggregate annotations using fewer annotators if we aggregate "soft" labels instead of "hard" labels. These results suggest that for binary audio annotation using a confidence elicitation mechanism and aggregating continuous labels we can obtain higher annotation quality, more informative labels, with quality differences more pronounced with fewer participants. Finally, we propose a way of integrating these confidence elicitation methods into a two-stage, multi-label annotation pipeline. 
    more » « less
  3. The overall purpose of this paper is to demonstrate how data preprocessing, training size variation, and subsampling can dynamically change the performance metrics of imbalanced text classification. The methodology encompasses using two different supervised learning classification approaches of feature engineering and data preprocessing with the use of five machine learning classifiers, five imbalanced sampling techniques, specified intervals of training and subsampling sizes, statistical analysis using R and tidyverse on a dataset of 1000 portable document format files divided into five labels from the World Health Organization Coronavirus Research Downloadable Articles of COVID-19 papers and PubMed Central databases of non-COVID-19 papers for binary classification that affects the performance metrics of precision, recall, receiver operating characteristic area under the curve, and accuracy. One approach that involves labeling rows of sentences based on regular expressions significantly improved the performance of imbalanced sampling techniques verified by performing statistical analysis using a t-test documenting performance metrics of iterations versus another approach that automatically labels the sentences based on how the documents are organized into positive and negative classes. The study demonstrates the effectiveness of ML classifiers and sampling techniques in text classification datasets, with different performance levels and class imbalance issues observed in manual and automatic methods of data processing. 
    more » « less
  4. In industrial applications, Machine Learning (ML) services are often deployed on cloud infrastructure and require a transfer of the input data over a network, which is susceptible to Quality of Service (QoS) degradation. In this paper we investigate the robustness of industrial ML classifiers towards varying Data Quality (DQ) due to degradation in network QoS. We define the robustness of an ML model as the ability to maintain a certain level of performance under variable levels of DQ at its input. We employ the classification accuracy as the performance metric for the ML classifiers studied. The POWDER testbed is utilized to create an experimental setup consisting of a real-world wireless network connecting two nodes. We transfer multiple video and image files between the two nodes under varying degrees of packet loss and varying buffer sizes to create degraded data. We then evaluate the performance of AWS Rekognition, a commercial ML tool for on-demand object detection, on corrupted video and image data. We also evaluate the performance of YOLOv7 to compare the performance of a commercial and an open-source model. As a result we demonstrate that even a slight degree of packet loss, 1% for images and 0.2% for videos, can have a drastic impact on the classification performance of the system. We discuss the possible ways to make industrial ML systems more robust to network QoS degradation. 
    more » « less
  5. One significant challenge in the field of supervised deep learning is the lack of large-scale labeled datasets for many problems. In this paper, we propose Consensus Spectral Clustering (CSC), which leverages the strengths of convolutional autoencoders and spectral clustering to provide pseudo labels for image data. This data can be used as weakly-labeled data for training and evaluating classifiers which require supervision. The primary weaknesses of previous works lies in their inability to isolate the object of interest in an image and cluster similar images together. We address these issues by denoising input images to remove pixels which do not contain data pertinent to the target. Additionally, we introduce a voting method for label selection to improve the clustering results. Our extensive experimentation on several benchmark datasets demonstrates that the proposed CSC method achieves competitive performance with state-of-the-art methods. 
    more » « less