skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Are Industrial ML Image Classifiers Robust to Data Affected by Network QoS Degradation?
In industrial applications, Machine Learning (ML) services are often deployed on cloud infrastructure and require a transfer of the input data over a network, which is susceptible to Quality of Service (QoS) degradation. In this paper we investigate the robustness of industrial ML classifiers towards varying Data Quality (DQ) due to degradation in network QoS. We define the robustness of an ML model as the ability to maintain a certain level of performance under variable levels of DQ at its input. We employ the classification accuracy as the performance metric for the ML classifiers studied. The POWDER testbed is utilized to create an experimental setup consisting of a real-world wireless network connecting two nodes. We transfer multiple video and image files between the two nodes under varying degrees of packet loss and varying buffer sizes to create degraded data. We then evaluate the performance of AWS Rekognition, a commercial ML tool for on-demand object detection, on corrupted video and image data. We also evaluate the performance of YOLOv7 to compare the performance of a commercial and an open-source model. As a result we demonstrate that even a slight degree of packet loss, 1% for images and 0.2% for videos, can have a drastic impact on the classification performance of the system. We discuss the possible ways to make industrial ML systems more robust to network QoS degradation.  more » « less
Award ID(s):
2321652
PAR ID:
10532537
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-2969-8
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Location:
Rochester, NY, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Goal, S (Ed.)
    Machine Learning models are widely utilized in a variety of applications, including Intelligent Transportation Systems (ITS). As these systems are operating in highly dynamic environments, they are exposed to numerous security threats that cause Data Quality (DQ) variations. Among such threats are network attacks that may cause data losses. We evaluate the influence of these factors on the image DQ and consequently on the image ML model performance. We propose and investigate Federated Learning (FL) as the way to enhance the overall level of privacy and security in ITS, as well as to improve ML model robustness to possible DQ variations in real-world applications. Our empirical study conducted with traffic sign images and YOLO, VGG16 and ResNet models proved the greater robustness of FL-based architecture over a centralized one. 
    more » « less
  2. This work investigates how different forms of input elicitation obtained from crowdsourcing can be utilized to improve the quality of inferred labels for image classification tasks, where an image must be labeled as either positive or negative depending on the presence/absence of a specified object. Five types of input elicitation methods are tested: binary classification (positive or negative); the ( x, y )-coordinate of the position participants believe a target object is located; level of confidence in binary response (on a scale from 0 to 100%); what participants believe the majority of the other participants' binary classification is; and participant's perceived difficulty level of the task (on a discrete scale). We design two crowdsourcing studies to test the performance of a variety of input elicitation methods and utilize data from over 300 participants. Various existing voting and machine learning (ML) methods are applied to make the best use of these inputs. In an effort to assess their performance on classification tasks of varying difficulty, a systematic synthetic image generation process is developed. Each generated image combines items from the MPEG-7 Core Experiment CE-Shape-1 Test Set into a single image using multiple parameters (e.g., density, transparency, etc.) and may or may not contain a target object. The difficulty of these images is validated by the performance of an automated image classification method. Experiment results suggest that more accurate results can be achieved with smaller training datasets when both the crowdsourced binary classification labels and the average of the self-reported confidence values in these labels are used as features for the ML classifiers. Moreover, when a relatively larger properly annotated dataset is available, in some cases augmenting these ML algorithms with the results (i.e., probability of outcome) from an automated classifier can achieve even higher performance than what can be obtained by using any one of the individual classifiers. Lastly, supplementary analysis of the collected data demonstrates that other performance metrics of interest, namely reduced false-negative rates, can be prioritized through special modifications of the proposed aggregation methods. 
    more » « less
  3. We investigate the role of representations and architectures for classifying 3D shapes in terms of their computational efficiency, generalization, and robustness to adversarial transformations. By varying the number of training examples and employing cross-modal transfer learning we study the role of initialization of existing deep architectures for 3D shape classification. Our analysis shows that multiview methods continue to offer the best generalization even without pretraining on large labeled image datasets, and even when trained on simplified inputs such as binary silhouettes. Furthermore, the performance of voxel-based 3D convolutional networks and point-based architectures can be improved via cross-modal transfer from image representations. Finally, we analyze the robustness of 3D shape classifiers to adversarial transformations and present a novel approach for generating adversarial perturbations of a 3D shape for multiview classifiers using a differentiable renderer. We find that point-based networks are more robust to point position perturbations while voxel-based and multiview networks are easily fooled with the addition of imperceptible noise to the input. 
    more » « less
  4. We investigate the impact of adversarial attacks against videos on the object detection and classification performance of industrial Machine Learning (ML) application. Specifically, we design the use case with the Intelligent Transportation System that processes real videos recorded by the vehicles’ dash cams and detects traffic lights and road signs in these videos. As the ML system, we employed Rekognition cloud service from Amazon, which is a commercial tool for on-demand object detection in the data of various modalities. To study Rekognition robustness to adversarial attacks, we manipulate the videos by adding the noise to them. We vary the intensity of the added noise by setting the ratio of randomly selected pixels affected by this noise. We then process the videos affected by the noise of various intensity and evaluate the performance demonstrated by Rekognition. As the evaluation metrics, we employ confidence scores provided by Rekognition, and the ratio of correct decisions that shows how successful is Rekognition in recognizing the patterns of interest in the frame. According to our results, even simple adversarial attacks of low intensity (up to 2% of the affected pixels in a single frame) result in a significant Rekognition performance decrease and require additional measures to improve the robustness and satisfy the industrial ML applications’ demands. 
    more » « less
  5. Kamar, Ece; Luther, Kurt (Ed.)
    This study investigates how different forms of input elicitation obtained from crowdsourcing can be utilized to improve the quality of inferred labels for image classification tasks, where an image must be labeled as either positive or negative depending on the presence/absence of a specified object. Three types of input elicitation methods are tested: binary classification (positive or negative); level of confidence in binary response (on a scale from 0-100%); and what participants believe the majority of the other participants’ binary classification is. We design a crowdsourcing experiment to test the performance of the proposed input elicitation methods and use data from over 200 participants. Various existing voting and machine learning (ML) methods are applied and others developed to make the best use of these inputs. In an effort to assess their performance on classification tasks of varying difficulty, a systematic synthetic image generation process is developed. Each generated image combines items from the MPEG-7 Core Experiment CE-Shape-1 Test Set into a single image using multiple parameters (e.g., density, transparency, etc.) and may or may not contain a target object. The difficulty of these images is validated by the performance of an automated image classification method. Experimental results suggest that more accurate classifications can be achieved when using the average of the self-reported confidence values as an additional attribute for ML algorithms relative to what is achieved with more traditional approaches. Additionally, they demonstrate that other performance metrics of interest, namely reduced false-negative rates, can be prioritized through special modifications of the proposed aggregation methods that leverage the variety of elicited inputs. 
    more » « less