skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: State of Science in Alarm System Safety: Implications for Researchers, Vendors, and Clinical Leaders
Abstract Alarm fatigue is a complex phenomenon that needs to be assessed within the context of the clinical setting. Considering that complexity, the available information on how to address alarm fatigue and improve alarm system safety is relatively scarce. This article summarizes the state of science in alarm system safety based on the eight dimensions of a sociotechnical model for studying health information technology in complex adaptive healthcare systems. The summary and recommendations were guided by available systematic reviews on the topic, interventional studies published between January 2019 and February 2022, and recommendations and evidence-based practice interventions published by professional organizations. The current article suggests implications to help researchers respond to the gap in science related to alarm safety, help vendors design safe monitoring systems, and help clinical leaders apply evidence-based strategies to improve alarm safety in their settings. Physiologic monitors in intensive care units—the devices most commonly used in complex care environments and associated with the highest number of alarms and deaths—are the focus of the current work.  more » « less
Award ID(s):
1812599
PAR ID:
10336746
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Biomedical Instrumentation & Technology
Volume:
56
Issue:
1
ISSN:
0899-8205
Page Range / eLocation ID:
19 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Classification of clinical alarms is at the heart of prioritization, suppression, integration, postponement, and other methods of mitigating alarm fatigue. Since these methods directly affect clinical care, alarm classifiers, such as intelligent suppression systems, need to be evaluated in terms of their sensitivity and specificity, which is typically calculated on a labeled dataset of alarms. Unfortunately, the collection and particularly labeling of such datasets requires substantial effort and time, thus deterring hospitals from investigating mitigations of alarm fatigue. This article develops a lightweight method for evaluating alarm classifiers without perfect alarm labels. The method relies on probabilistic labels obtained from data programming—a labeling paradigm based on combining noisy and cheap-to-obtain labeling heuristics. Based on these labels, the method produces confidence bounds for the sensitivity/specificity values from a hypothetical evaluation with manual labeling. Our experiments on five alarm datasets collected at Children’s Hospital of Philadelphia show that the proposed method provides accurate bounds on the classifier’s sensitivity/specificity, appropriately reflecting the uncertainty from noisy labeling and limited sample sizes. 
    more » « less
  2. Clinical practice guidelines, care pathways, and protocols are designed to support evidence-based practices for clinicians; however, their adoption remains a challenge. We set out to investigate why clinicians deviate from the “Wake Up and Breathe” protocol, an evidence-based guideline for liberating patients from mechanical ventilation in the intensive care unit (ICU). We conducted over 40 hours of direct observations of live clinical workflows, 17 interviews with frontline care providers, and 4 co-design workshops at three different medical intensive care units. Our findings indicate that unlike prior literature suggests, disagreement with the protocol is not a substantial barrier to adoption. Instead, the uncertainty surrounding the application of the protocol for individual patients leads clinicians to deprioritize adoption in favor of tasks where they have high certainty. Reflecting on these insights, we identify opportunities for technical systems to help clinicians in effectively executing the protocol and discuss future directions for HCI research to support the integration of protocols into clinical practice in complex, team-based healthcare settings. 
    more » « less
  3. Virtual Mental Health Assistants (VMHAs) are utilized in health care to provide patient services such as counseling and suggestive care. They are not used for patient diagnostic assistance because they cannot adhere to safety constraints and specialized clinical process knowledge ( ProKnow ) used to obtain clinical diagnoses. In this work, we define ProKnow as an ordered set of information that maps to evidence-based guidelines or categories of conceptual understanding to experts in a domain. We also introduce a new dataset of diagnostic conversations guided by safety constraints and ProKnow that healthcare professionals use ( ProKnow - data ). We develop a method for natural language question generation (NLG) that collects diagnostic information from the patient interactively ( ProKnow - algo ). We demonstrate the limitations of using state-of-the-art large-scale language models (LMs) on this dataset. ProKnow - algo incorporates the process knowledge through explicitly modeling safety, knowledge capture, and explainability. As computational metrics for evaluation do not directly translate to clinical settings, we involve expert clinicians in designing evaluation metrics that test four properties: safety, logical coherence, and knowledge capture for explainability while minimizing the standard cross entropy loss to preserve distribution semantics-based similarity to the ground truth. LMs with ProKnow - algo generated 89% safer questions in the depression and anxiety domain (tested property: safety ). Further, without ProKnow - algo generations question did not adhere to clinical process knowledge in ProKnow - data (tested property: knowledge capture ). In comparison, ProKnow - algo -based generations yield a 96% reduction in our metrics to measure knowledge capture. The explainability of the generated question is assessed by computing similarity with concepts in depression and anxiety knowledge bases. Overall, irrespective of the type of LMs, ProKnow - algo achieved an averaged 82% improvement over simple pre-trained LMs on safety, explainability, and process-guided question generation. For reproducibility, we will make ProKnow - data and the code repository of ProKnow - algo publicly available upon acceptance. 
    more » « less
  4. High false alarm rate in intensive care units (ICUs) has been identified as one of the most critical medical challenges in recent years. This often results in overwhelming the clinical staff by numerous false or unurgent alarms and decreasing the quality of care through enhancing the probability of missing true alarms as well as causing delirium, stress, sleep deprivation and depressed immune systems for patients. One major cause of false alarms in clinical practice is that the collected signals from different devices are processed individually to trigger an alarm, while there exists a considerable chance that the signal collected from one device is corrupted by noise or motion artifacts. In this paper, we propose a low-computational complexity yet accurate game-theoretic feature selection method which is based on a genetic algorithm that identifies the most informative biomarkers across the signals collected from various monitoring devices and can considerably reduce the rate of false alarms. 
    more » « less
  5. null (Ed.)
    Background Clinical alarm system safety is a national patient safety goal in the United States. Physiologic monitors are associated with the highest number of device alarms and alarm-related deaths. However, research involving nurses’ use of physiologic monitors is rare. Hence, the identification of critical usability issues for monitors, especially those related to patient safety, is a nursing imperative. Objective This study examined nurses’ usability of physiologic monitors in intensive care units with respect to the effectiveness and efficiency of monitor use. Methods In total, 30 nurses from 4 adult intensive care units completed 40 tasks in a simulation environment. The tasks were common monitoring tasks that were crucial for appropriate monitoring and safe alarm management across four categories of competencies: admitting, transferring, and discharging patients using the monitors (7 tasks); managing measurements and monitor settings (23 tasks); performing electrocardiogram (ECG) analysis (7 tasks); and troubleshooting alarm conditions (3 tasks). The nurse-monitor interaction was video-recorded. The principal investigator and two expert intensive care units nurse educators identified, classified, and validated task success (effectiveness) and the time of task completion (efficiency). Results Among the 40 tasks, only 2 (5%) were successfully completed by all the nurses. At least 1-27 (3%-90%) nurses abandoned or did not correctly perform 38 tasks. The task with the shortest completion time was “take monitor out of standby” (mean 0:02, SD 0:01 min:s), whereas the task “record a 25 mm/s ECG strip of any of the ECG leads” had the longest completion time (mean 1:14, SD 0:32 min:s). The total time to complete 37 navigation-related tasks ranged from a minimum of 3 min 57 s to a maximum of 32 min 42 s. Regression analysis showed that it took 6 s per click or step to successfully complete a task. To understand the nurses’ thought processes during monitor navigation, the authors analyzed the paths of the 2 tasks with the lowest successful completion rates, where only 13% (4/30) of the nurses correctly completed these 2 tasks. Although 30% (9/30) of the nurses accessed the correct screen first for task 1 and task 2, they could not find their way easily from there to successfully complete the 2 tasks. Conclusions Usability testing of physiologic monitors revealed major ineffectiveness and inefficiencies in the current nurse-monitor interactions. The results indicate the potential for safety and productivity issues in completing routine tasks. Training on monitor use should include critical monitoring functions that are necessary for safe, effective, efficient, and appropriate monitoring to include knowledge of the shortest navigation path. It is imperative that vendors’ future monitor designs mimic clinicians’ thought processes for successful, safe, and efficient monitor navigation. 
    more » « less