skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Feature Selection Method Based on Shapley Value to False Alarm Reduction in ICUs A Genetic-Algorithm Approach
High false alarm rate in intensive care units (ICUs) has been identified as one of the most critical medical challenges in recent years. This often results in overwhelming the clinical staff by numerous false or unurgent alarms and decreasing the quality of care through enhancing the probability of missing true alarms as well as causing delirium, stress, sleep deprivation and depressed immune systems for patients. One major cause of false alarms in clinical practice is that the collected signals from different devices are processed individually to trigger an alarm, while there exists a considerable chance that the signal collected from one device is corrupted by noise or motion artifacts. In this paper, we propose a low-computational complexity yet accurate game-theoretic feature selection method which is based on a genetic algorithm that identifies the most informative biomarkers across the signals collected from various monitoring devices and can considerably reduce the rate of false alarms.  more » « less
Award ID(s):
1657260
PAR ID:
10053371
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
A Feature Selection Method Based on Shapley Value to False Alarm Reduction in ICUs A Genetic-Algorithm Approach
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case–control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1–5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0–73.5) minutes. A median false alarm rate of 1.1 (IQR. 0–2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0–58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness. 
    more » « less
  2. Abstract Alarm fatigue is a complex phenomenon that needs to be assessed within the context of the clinical setting. Considering that complexity, the available information on how to address alarm fatigue and improve alarm system safety is relatively scarce. This article summarizes the state of science in alarm system safety based on the eight dimensions of a sociotechnical model for studying health information technology in complex adaptive healthcare systems. The summary and recommendations were guided by available systematic reviews on the topic, interventional studies published between January 2019 and February 2022, and recommendations and evidence-based practice interventions published by professional organizations. The current article suggests implications to help researchers respond to the gap in science related to alarm safety, help vendors design safe monitoring systems, and help clinical leaders apply evidence-based strategies to improve alarm safety in their settings. Physiologic monitors in intensive care units—the devices most commonly used in complex care environments and associated with the highest number of alarms and deaths—are the focus of the current work. 
    more » « less
  3. Classification of clinical alarms is at the heart of prioritization, suppression, integration, postponement, and other methods of mitigating alarm fatigue. Since these methods directly affect clinical care, alarm classifiers, such as intelligent suppression systems, need to be evaluated in terms of their sensitivity and specificity, which is typically calculated on a labeled dataset of alarms. Unfortunately, the collection and particularly labeling of such datasets requires substantial effort and time, thus deterring hospitals from investigating mitigations of alarm fatigue. This article develops a lightweight method for evaluating alarm classifiers without perfect alarm labels. The method relies on probabilistic labels obtained from data programming—a labeling paradigm based on combining noisy and cheap-to-obtain labeling heuristics. Based on these labels, the method produces confidence bounds for the sensitivity/specificity values from a hypothetical evaluation with manual labeling. Our experiments on five alarm datasets collected at Children’s Hospital of Philadelphia show that the proposed method provides accurate bounds on the classifier’s sensitivity/specificity, appropriately reflecting the uncertainty from noisy labeling and limited sample sizes. 
    more » « less
  4. False alarms generated by physiological monitors can overwhelm clinical caretakers with a variety of alarms. The resulting alarm fatigue can be mitigated with alarm suppression. Before being deployed, such suppression mechanisms need to be evaluated through a costly observational study, which would determine and label the truly suppressible alarms. This paper proposes a lightweight method for evaluating alarm suppression without access to the true alarm labels. The method is based on the data programming paradigm, which combines noisy and cheap-to-obtain labeling heuristics into probabilistic labels. Based on these labels, the method estimates the sensitivity/specificity of a suppression mechanism and describes the likely outcomes of an observational study in the form of confidence bounds. We evaluate the proposed method in a case study of low SpO2 alarms using a dataset collected at Children's Hospital of Philadelphia and show that our method provides tight and accurate bounds that significantly outperform the naive comparative method. 
    more » « less
  5. Abstract A novel computer vision‐based meteor head echo detection algorithm is developed to study meteor fluxes and their physical properties, including initial range, range coverage, and radial velocity. The proposed Algorithm for Head Echo Automatic Detection (AHEAD) comprises a feature extraction function and a Convolutional Neural Network (CNN). The former is tailored to identify meteor head echoes, and then a CNN is employed to remove false alarms. In the testing of meteor data collected with the Jicamarca 50 MHz incoherent scatter radar, the new algorithm detects over 180 meteors per minute at dawn, which is 2 to 10 times more sensitive than prior manual or algorithmic approaches, with a false alarm rate less than 1 percent. The present work lays the foundation of developing a fully automatic AI‐meteor package that detects, analyzes, and distinguishes among many types of meteor echoes. Furthermore, although initially evaluated for meteor data collected with the Jicamarca VHF incoherent radar, the new algorithm is generic enough that can be applied to other facilities with minor modifications. The CNN removes up to 98 percent of false alarms according to the testing set. We also present and discuss the physical characteristics of meteors detected with AHEAD, including flux rate, initial range, line of sight velocity, Signal‐to‐Noise Ratio, and noise characteristics. Our results indicate that stronger meteor echoes are detected at a slightly lower altitude and lower radial velocity than other meteors. 
    more » « less