skip to main content


Title: Analysis of biodiversity data suggests that mammal species are hidden in predictable places
Research in the biological sciences is hampered by the Linnean shortfall, which describes the number of hidden species that are suspected of existing without formal species description. Using machine learning and species delimitation methods, we built a predictive model that incorporates some 5.0 × 10 5 data points for 117 species traits, 3.3 × 10 6 occurrence records, and 9.1 × 10 5 gene sequences from 4,310 recognized species of mammals. Delimitation results suggest that there are hundreds of undescribed species in class Mammalia. Predictive modeling indicates that most of these hidden species will be found in small-bodied taxa with large ranges characterized by high variability in temperature and precipitation. As demonstrated by a quantitative analysis of the literature, such taxa have long been the focus of taxonomic research. This analysis supports taxonomic hypotheses regarding where undescribed diversity is likely to be found and highlights the need for investment in taxonomic research to overcome the Linnean shortfall.  more » « less
Award ID(s):
1911293
NSF-PAR ID:
10336820
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
14
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Most empirical research on biological shortfalls has focused on vertebrate taxa. This is important given many species in poorly studied groups such as invertebrates, plants, and fungi are predicted to possess high conservation risk. Here, we focus on Laboulbeniomycetes: a class of microfungi that are understudied. We examined four shortfalls: Linnean (knowledge gaps in species diversity), Wallacean (knowledge gaps in distributions), Latimerian (knowledge gaps in species persistence), and the newly introduced Scottian (knowledge gaps in species conservation assessments) shortfalls. The Linnean shortfall in Laboulbeniomycetes is hard to predict due to inconsistent species description rates. Analysis of distribution patterns indicates Laboulbeniomycetes are likely to experience an extremely high Wallacean shortfall, with many species having highly disjunct known distributions. Latimerian shortfall analysis shows over half (51%) of Laboulbeniomycetes have not been recorded in >50 years, while the group has a collective Scottian shortfall of 100%, given none of the 2454 described species have received an IUCN threat assessment. We suggest continued study of natural history collections, expanded citizen science programmes, and machine‐learning identification approaches as important tools for reducing knowledge shortfalls in both Laboulbeniomycetes and poorly studied taxa more generally.

     
    more » « less
  2. Abstract

    Cryptic ecologies, the Wallacean Shortfall of undocumented species’ geographical ranges and the Linnaean Shortfall of undescribed diversity, are all major barriers to conservation assessment. When these factors overlap with drivers of extinction risk, such as insular distributions, the number of threatened species in a region or clade may be underestimated, a situation we term ‘cryptic extinction risk’. The genusLepidodactylusis a diverse radiation of insular and arboreal geckos that occurs across the western Pacific. Previous work onLepidodactylusshowed evidence of evolutionary displacement around continental fringes, suggesting an inherent vulnerability to extinction from factors such as competition and predation. We sought to (1) comprehensively review status and threats, (2) estimate the number of undescribed species, and (3) estimate extinction risk in data deficient and candidate species, inLepidodactylus. From our updated IUCN Red List assessment, 60% of the 58 recognized species are threatened (n = 15) or Data Deficient (n = 21), which is higher than reported for most other lizard groups. Species from the smaller and isolated Pacific islands are of greatest conservation concern, with most either threatened or Data Deficient, and all particularly vulnerable to invasive species. We estimated 32 undescribed candidate species and linear modelling predicted that an additional 18 species, among these and the data deficient species, are threatened with extinction. Focusing efforts to resolve the taxonomy and conservation status of key taxa, especially on small islands in the Pacific, is a high priority for conserving this remarkably diverse, yet poorly understood, lizard fauna. Our data highlight how cryptic ecologies and cryptic diversity combine and lead to significant underestimation of extinction risk.

     
    more » « less
  3. Aguirre, Windsor E. (Ed.)
    Poeciliopsis (Cyprinodontiformes: Poeciliidae) is a genus comprised of 25 species of freshwater fishes. Several well-known taxonomic uncertainties exist within the genus, especially in relation to the taxonomic status of Poeciliopsis pleurospilus and P . gracilis . However, to date, no studies have been conducted to specifically address the taxonomic status of these two species. The goal of this study was to examine the taxonomic validity of P . pleurospilus and P . gracilis using genomic data (ddRADseq) in phylogenetic, population genetic, and species delimitation frameworks. Multiple analyses support the recognition of both taxa as distinct species and also permits us to revise their respective distributions. A species delimitation analysis indicates that P . pleurospilus and P . gracilis are distinct species, each of which consists of two distinct lineages that are geographically structured. Phylogenetic and population genetic analyses provide clear evidence that individuals of P . gracilis are distributed north and west of the Isthmus of Tehuantepec in both Pacific and Atlantic river systems in Mexico, whereas individuals of P . pleurospilus are distributed in both Atlantic and Pacific river systems south and east of the Isthmus of Tehuantepec, from southern Mexico to Honduras. 
    more » « less
  4. Abstract

    Amazonia has the richest primate fauna in the world. Nonetheless, the diversity and distribution of Amazonian primates remain little known and the scarcity of baseline data challenges their conservation. These challenges are especially acute in the Amazonian arc of deforestation, the 2500 km long southern edge of the Amazonian biome that is rapidly being deforested and converted to agricultural and pastoral landscapes. Amazonian marmosets of the genusMicoare little known endemics of this region and therefore a priority for research and conservation efforts. However, even nascent conservation efforts are hampered by taxonomic uncertainties in this group, such as the existence of a potentially new species from the Juruena–Teles Pires interfluve hidden within theM. emiliaeepithet. Here we test if these marmosets belong to a distinct species using new morphological, phylogenomic, and geographic distribution data analysed within an integrative taxonomic framework. We discovered a new, pseudo-crypticMicospecies hidden within the epithetM. emiliae, here described and named after Horacio Schneider, the pioneer of molecular phylogenetics of Neotropical primates. We also clarify the distribution, evolutionary and morphological relationships of four otherMicospecies, bridging Linnean, Wallacean, and Darwinian shortfalls in the conservation of primates in the Amazonian arc of deforestation.

     
    more » « less
  5. Abstract

    Taxonomic data is essential to advance the discovery and description of biodiversity, as well as the study of evolutionary processes. Emerging large-scale datasets and new methods of analysis have provided different approaches to describe biodiversity. Here, we present a review of the taxonomic history in Cycadales including an analysis of historical taxonomic concepts and approaches used for species delimitation. We examine the trends in the publication of new species following taxonomic works in books, journals and horticultural catalogues, monographic projects and floras where species treatments were published. In addition, we review the studies concerning species delimitations using the literature available in scientific journals appearing in the database ISI Web of Knowledge. The approaches used were discussed throughout all research focused on empirical and theoretical considerations in each study. We review the current state of the studies on causal processes that have given rise to the currently recognized diversity. The trend shows that taxonomic work on discovery and description of species has been intensive in the last 40 years culminating in 38.8% of binomials published. As a result, we consider the relevance of the monographs and floras for identification of species for other biological disciplines and the content of these contributions is compared and discussed. A total of six criteria (diagnosability, phenetic, phylogenetic, genotypic cluster, niche specialization and coalescent) were detected from the following three approaches to species delimitation within Cycadales: traditional, integrative taxonomy, and monophyletic. In all cases, the results from these species delimitations not only provided a taxonomic treatment or proposed a new species, but also supposedly clarified the other species involved as a result of the new taxonomic concept of the new species described. Most investigations of species delimitation used the traditional approach or a phenetic criteria. Finally, we discuss evolutionary studies on causal processes involved in cycad diversity. This is considered in the context of species delimitation as hypothesis testing for a successful evaluation of variation in both genetic and morphological understanding.

     
    more » « less