ABSTRACT We analyse the rest-optical emission-line ratios of z ∼ 1.5 galaxies drawn from the Multi-Object Spectrometer for Infra-Red Exploration Deep Evolution Field (MOSDEF) survey. Using composite spectra, we investigate the mass–metallicity relation (MZR) at z ∼ 1.5 and measure its evolution to z = 0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z ∼ 1.5 to z = 0 depends on stellar mass, evolving by $$\Delta \rm log(\rm O/H) \sim 0.25$$ dex at M*< $$10^{9.75}\, \mathrm{M}_{\odot }$$ down to $$\Delta \rm log(\rm O/H) \sim 0.05$$ at M* ≳ $$10^{10.5}\, \mathrm{M}_{\odot }$$. In contrast, the O3N2-based MZR shows a constant offset of $$\Delta \rm log(\rm O/H) \sim 0.30$$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z ∼ 1.5 sample. We investigated the secondary dependence of the MZR on star formation rate (SFR) by measuring correlated scatter about the mean M*-specific SFR and M*−$$\log (\rm O3N2)$$ relations. We find an anticorrelation between $$\log (\rm O/H)$$ and sSFR offsets, indicating the presence of a M*−SFR−Z relation, though with limited significance. Additionally, we find that our z ∼ 1.5 stacks lie along the z = 0 metallicity sequence at fixed μ = log (M*/M⊙) − 0.6 × $$\log (\rm SFR / M_{\odot } \, yr^{-1})$$ suggesting that the z ∼ 1.5 stacks can be described by the z = 0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [N ii]/H α scales with galaxy properties is crucial to accurately describe the effects of blended [N ii] and H α on redshift and H α fiux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope.
more »
« less
CO Emission, Molecular Gas, and Metallicity in Main-sequence Star-forming Galaxies at z ∼ 2.3*
Abstract We present observations of CO(3−2) in 13 main-sequence z = 2.0–2.5 star-forming galaxies at log ( M * / M ⊙ ) = 10.2 – 10.6 that span a wide range in metallicity (O/H) based on rest-optical spectroscopy. We find that L CO ( 3 − 2 ) ′ /SFR decreases with decreasing metallicity, implying that the CO luminosity per unit gas mass is lower in low-metallicity galaxies at z ∼ 2. We constrain the CO-to-H 2 conversion factor ( α CO ) and find that α CO inversely correlates with metallicity at z ∼ 2. We derive molecular gas masses ( M mol ) and characterize the relations among M * , SFR, M mol , and metallicity. At z ∼ 2, M mol increases and the molecular gas fraction ( M mol / M * ) decreases with increasing M * , with a significant secondary dependence on SFR. Galaxies at z ∼ 2 lie on a near-linear molecular KS law that is well-described by a constant depletion time of 700 Myr. We find that the scatter about the mean SFR− M * , O/H− M * , and M mol − M * relations is correlated such that, at fixed M * , z ∼ 2 galaxies with larger M mol have higher SFR and lower O/H. We thus confirm the existence of a fundamental metallicity relation at z ∼ 2, where O/H is inversely correlated with both SFR and M mol at fixed M * . These results suggest that the scatter of the z ∼ 2 star-forming main sequence, mass–metallicity relation, and M mol – M * relation are primarily driven by stochastic variations in gas inflow rates. We place constraints on the mass loading of galactic outflows and perform a metal budget analysis, finding that massive z ∼ 2 star-forming galaxies retain only 30% of metals produced, implying that a large mass of metals resides in the circumgalactic medium.
more »
« less
- Award ID(s):
- 2009313
- PAR ID:
- 10336829
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 942
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We measure empirical relationships between the local star formation rate (SFR) and properties of the star-forming molecular gas on 1.5 kpc scales across 80 nearby galaxies. These relationships, commonly referred to as “star formation laws,” aim at predicting the local SFR surface density from various combinations of molecular gas surface density, galactic orbital time, molecular cloud free fall time, and the interstellar medium dynamical equilibrium pressure. Leveraging a multiwavelength database built for the Physics at High Angular Resolution in Nearby Galaxies (PHANGS) survey, we measure these quantities consistently across all galaxies and quantify systematic uncertainties stemming from choices of SFR calibrations and the CO-to-H2conversion factors. The star formation laws we examine show 0.3–0.4 dex of intrinsic scatter, among which the molecular Kennicutt–Schmidt relation shows a ∼10% larger scatter than the other three. The slope of this relation rangesβ≈ 0.9–1.2, implying that the molecular gas depletion time remains roughly constant across the environments probed in our sample. The other relations have shallower slopes (β≈ 0.6–1.0), suggesting that the star formation efficiency per orbital time, the star formation efficiency per free fall time, and the pressure-to-SFR surface density ratio (i.e., the feedback yield) vary systematically with local molecular gas and SFR surface densities. Last but not least, the shapes of the star formation laws depend sensitively on methodological choices. Different choices of SFR calibrations can introduce systematic uncertainties of at least 10%–15% in the star formation law slopes and 0.15–0.25 dex in their normalization, while the CO-to-H2conversion factors can additionally produce uncertainties of 20%–25% for the slope and 0.10–0.20 dex for the normalization.more » « less
-
Abstract The chemical abundance patterns of gas and stars in galaxies are powerful probes of galaxies’ star formation histories and the astrophysics of galaxy assembly but are challenging to measure with confidence in distant galaxies. In this paper, we report the first measurements of the correlation between stellar mass ( M * ) and multiple tracers of chemical enrichment (including O, N, and Fe) in individual z ∼ 2–3 galaxies, using a sample of 195 star-forming galaxies from the Keck Baryonic Structure Survey. The galaxies’ chemical abundances are inferred using photoionization models capable of reconciling high-redshift galaxies’ observed extreme rest-UV and rest-optical spectroscopic properties. We find that the M * –O/H relation for our sample is relatively shallow, with moderately large scatter, and is offset ∼0.35 dex higher than the corresponding M * –Fe/H relation. The two relations have very similar slopes, indicating a high level of α -enhancement—O/Fe ≈ 2.2 × (O/Fe) ⊙ —across two decades in M * . The M * –N/H relation has the steepest slope and largest intrinsic scatter, which likely results from the fact that many z ∼ 2 galaxies are observed near or past the transition from “primary” to “secondary” N production, and may reflect uncertainties in the astrophysical origin of N. Together, these results suggest that z ∼ 2 galaxies are old enough to have seen substantial enrichment from intermediate-mass stars, but are still young enough that Type Ia supernovae have not had time to contribute significantly to their enrichment.more » « less
-
Abstract Understanding the chemical enrichment of different elements is crucial to gaining a complete picture of galaxy chemical evolution. In this study, we present a new sample of 46 low-redshift, low-mass star-forming galaxies atM*∼ 108−10M⊙along with two quiescent galaxies atM*∼ 108.8M⊙observed with the Keck Cosmic Web Imager, aiming to investigate the chemical evolution of galaxies in the transition zone between Local Group satellites and massive field galaxies. We develop a novel method to simultaneously determine stellar abundances of iron and magnesium in star-forming galaxies. With the gas-phase oxygen abundance (O/H)gmeasured using the strong-line method, we are able to make the first-ever apples-to-apples comparison ofαelements in the stars and the interstellar medium. We find that the [Mg/H]*–[O/H]grelation is much tighter than the [Fe/H]*–[O/H]grelation, which can be explained by the similar production processes ofαelements. Most galaxies in our sample exhibit higher [O/H]gthan [Fe/H]*and [Mg/H]*. In addition, we construct mass–metallicity relations (MZRs) measured as three different elements (Fe*, Mg*, Og). Compared to the gas O-MZR, the stellar Fe- and Mg-MZRs show larger scatter driven by variations in specific star formation rates (sSFR), with star-forming galaxies exhibiting higher sSFR and lower stellar abundances at fixed mass. The excess of [O/H]gcompared to stellar abundances as well as the anticorrelation between sSFR and stellar abundance suggests that galaxy quenching of intermediate-mass galaxies atM*∼ 108−10M⊙is primarily driven by starvation.more » « less
-
Aims. We aim to quantify the relation between the dust-to-gas mass ratio (DTG) and gas-phase metallicity of z = 2.1 − 2.5 luminous galaxies and contrast this high-redshift relation against analogous constraints at z = 0. Methods. We present a sample of ten star-forming main-sequence galaxies in the redshift range 2.1 < z < 2.5 with rest-optical emission-line information available from the MOSDEF survey and with ALMA 1.2 millimetre and CO J = 3 − 2 follow-up observations. The galaxies have stellar masses ranging from 10 10.3 to 10 10.6 M ⊙ and cover a range in star-formation rate from 35 to 145 M ⊙ yr −1 . We calculated the gas-phase oxygen abundance of these galaxies from rest-optical nebular emission lines (8.4 < 12 + log(O/H) < 8.8, corresponding to 0.5−1.25 Z ⊙ ). We estimated the dust and H 2 masses of the galaxies (using a metallicity-dependent CO-to-H 2 conversion factor) from the 1.2 mm and CO J = 3 − 2 observations, respectively, from which we estimated a DTG. Results. We find that the galaxies in this sample follow the trends already observed between CO line luminosity and dust-continuum luminosity from z = 0 to z = 3, extending such trends to fainter galaxies at 2.1 < z < 2.5 than observed to date. We find no second-order metallicity dependence in the CO – dust-continuum luminosity relation for the galaxies presented in this work. The DTGs of main-sequence galaxies at 2.1 < z < 2.5 are consistent with an increase in the DTG with gas-phase metallicity. The metallicity dependence of the DTG is driven by the metallicity dependence of the CO-to-H 2 conversion factor. Galaxies at z = 2.1 − 2.5 are furthermore consistent with the DTG-metallicity relation found at z = 0 (i.e. with no significant evolution), providing relevant constraints for galaxy formation models. These results furthermore imply that the metallicity of galaxies should be taken into account when estimating cold-gas masses from dust-continuum emission, which is especially relevant when studying metal-poor low-mass or high-redshift galaxies.more » « less