skip to main content


Title: Supported Bifunctional Molybdenum Oxide-Palladium Catalysts for Selective Hydrodeoxygenation of Biomass-Derived Polyols and 1,4-Anhydroerythritol
Selective removal of oxygen from biomass-derived polyols is critical toward bridging the gap between biomass feedstocks and the production of commodity chemicals. In this work, we show that earth-abundant molybdenum oxide based heterogeneous catalysts are active, selective, and stable for the cleavage of vicinal C–O bonds in biomass-derived polyols. Catalyst characterization (Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)) shows that partially reduced MoOx centers are responsible for C–O bond cleavage and are generated in situ by hydrogen dissociated atoms over palladium (Pd) nanoparticles. We find that the support, TiO2, facilitates communication between the hydrogen dissociating metal and dispersed MoOx sites through hydrogen spillover. Reactivity studies using a biomass-derived model substrate (1,4-anhydroerythritol) show the effective removal of vicinal hydroxyls over MoOx-Pd/TiO2 producing tetrahydrofuran with >98% selectivity at 29% conversion. Catalyst stability is demonstrated upon cycling. These studies are critical toward the development of low-cost heterogeneous catalysts for sustainable hydrodeoxygenation of biobased polyols to platform chemicals.  more » « less
Award ID(s):
1900176
NSF-PAR ID:
10336913
Author(s) / Creator(s):
Date Published:
Journal Name:
ACS sustainable chemistry engineering
ISSN:
2168-0485
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrodeoxygenation chemistries play a key role in the upgrading of biomass‐derived feedstocks. Among these, the removal of targeted hydroxyl groups through selective C−O bond cleavage from molecules containing multiple functionalities over heterogeneous catalysts has shown to be a challenge. Herein, we report a highly selective and stable heterogeneous catalyst for hydrodeoxygenation of tartaric acid to succinic acid. The catalyst consists of reduced Mo5+centers promoted by palladium, which facilitate selective C−O bond cleavage, while leaving intact carboxylic acid end groups. Stable catalytic performance over multiple cycles is demonstrated. This catalytic system opens up opportunities for selective processing of biomass‐derived sugar acids with a high degree of chemical functionality.

     
    more » « less
  2. Heterogeneously catalyzed deoxydehydration (DODH) ordinarily occurs over relatively costly oxide supported ReO x sites and is an effective process for the removal of vicinal OH groups that are common in biomass-derived chemicals. Here, through first-principles calculations, we investigate the DODH of 1,4-anhydroerythritol over anatase TiO 2 (101)-supported ReO x and MoO x . The atomistic structures of ReO x and MoO x under typical reaction conditions were identified with constrained thermodynamics calculations as ReO 2 (2O)/6H–TiO 2 and MoO(2O)/3H–TiO 2 , respectively. The calculated energy profile and developed microkinetic reaction model suggest that both ReO 2 (2O)/6H–TiO 2 and MoO(2O)/3H–TiO 2 exhibit a relatively low DODH activity at 413 K. However, at higher temperatures such as 473 K, MoO(2O)/TiO 2 (101) was found to exhibit a reasonably high catalytic activity similar to ReO 2 (2O)/6H–TiO 2 , consistent with a recent experimental study. Mechanistically, the first O–H bond cleavage of 1,4-anhydroerythritol and the dihydrofuran extrusion were found to be the rate-controlling steps for the reaction over ReO 2 (2O)/6H–TiO 2 and MoO(2O)/3H–TiO 2 , respectively. Thus, this study clarifies the mechanism of the DODH over oxide-supported catalysts and provides meaningful insight into the design of low-cost DODH catalysts. 
    more » « less
  3. Deoxydehydration (DODH) is a transformation that converts a vicinal diol into an olefin with the help of a sacrificial reductant. The reaction has drawn interest in the past 25 years for its potential to upgrade polyols from biomass to chemicals or fuels. This minireview is organized in 7 sections, and, while providing a comprehensive survey of the literature in tabular form, focuses on aspects that are not extensively discussed in prior reviews. The first three brief sections consist of an introduction to DODH, followed by an overview of present research thrusts and a listing of prior reviews and the patent literature. The fourth section addresses reaction thermodynamics. The fifth section provides a survey of catalysts investigated for DODH, most of which are rhenium, molybdenum, and vanadium compounds. These catalysts have been used in heterogeneous and homogenous catalysis alike. The catalyst compositions are discussed including the effect of counterions that are not part of the active metal moiety. The sixth section reviews rate laws that have been formulated and the steps identified as rate controlling, by experiment or theory. Catalyst reduction and olefin extrusion emerge as key steps. In this context, the somewhat mysterious trends among alcohol reductants are inspected. It emerges that the DODH field would benefit from benchmark reactions that will quantitatively connect the collected catalytic data. The seventh section considers phase chemistry, separations, and energy input. 
    more » « less
  4. Selective electrochemical two-electron oxygen reduction is a promising route for renewable and on-site H2O2 generation as an alternative to the anthraquinone process. Herein, we report a high-performance nitrogen-coordinated single-atom Pd electrocatalyst, which is derived from Pd-doped zeolitic imidazolate frameworks (ZIFs) through one-step thermolysis. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with X-ray absorption spectroscopy verifies atomically dispersed Pd atoms on nitrogen-doped carbon (Pd-NC). The single-atom Pd-NC catalyst exhibits excellent electrocatalytic performance for two-electron oxygen reduction to H2O2, which shows ∼95% selectivity toward H2O2 and an unprecedented onset potential of ∼0.8 V versus revisable hydrogen electrode (RHE) in 0.1 M KOH. Density functional theory (DFT) calculations demonstrate that the Pd-N4 catalytic sites thermodynamically prefer *–O bond breaking to O–O bond breaking, corresponding to a high selectivity for H2O2 production. This work provides a deep insight into the understanding of the catalytic process and design of high-performance 2e– ORR catalysts. 
    more » « less
  5. Deoxydehydration (DODH) is an emerging biomass deoxygenation process whereby vicinal OH groups are removed. Based on DFT calculations and microkinetic modeling, we seek to understand the mechanism of the Re-catalyzed deoxydehydration supported on CeO 2 (111). In addition, we aim at understanding the promotional effect of Pd in a heterogeneous ReO x –Pd/CeO 2 DODH catalyst system. We disentangle the contribution of the oxide support, the oxide-supported single ReO x species, and a co-adsorbed Pd promoter that has no direct interaction with the Re species. In the absence of a nearby Pd cluster, a Re site is able to reduce subsurface Ce-ions of a hydroxylated CeO 2 (111) surface, leading to a catalytically active Re +6 species. The effect of Pd is twofold: (i) Pd catalyzes the hydrogen dissociation and spillover onto CeO 2 , which is an indispensable process for the regeneration of the Re catalyst, and (ii) Pd adsorbed in close proximity to Re on CeO 2 (111) facilitates the oxidation of Re to a +7 oxidation state, which leads to an even more active Re species than the Re +6 site present in the absence of Pd. The latter promotional effect of Pd (and change in oxidation state of Re) disappears with increasing Pd–Re distance and in the presence of oxygen defects on the ceria support. Under these conditions, the ReO x –Pd/CeO 2 catalyst system exhibits appreciable activity consistent with recent experiments. The established mechanism and role of various species in the catalyst system help to better understand the deoxydehydration catalysis. Also, the importance of the Re oxidation state and the identified oxidation state modification mechanisms suggest a new pathway for tuning the properties of metal-oxide supported catalysts. 
    more » « less