skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photoelectrochemical approaches for the conversion of lignin at room temperature
The selective cleavage of C–C/C–O linkages represents a key step toward achieving the chemical conversion of biomass to targeted value-added chemical products under ambient conditions. Using photoelectrosynthetic solar cells is a promising method to address the energy intensive depolymerization of lignin for the production of biofuels and valuable chemicals. This feature article gives an in-depth overview of recent progress using dye-sensitized photoelectrosynthetic solar cells (DSPECs) to initiate the cleavage of C–C/C–O bonds in lignin and related model compounds. This approach takes advantage of N -oxyl mediated catalysis in organic electrolytes and presents a promising direction for the sustainable production of chemicals currently derived from fossil fuels.  more » « less
Award ID(s):
2027125
PAR ID:
10399936
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
59
Issue:
4
ISSN:
1359-7345
Page Range / eLocation ID:
401 to 413
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The high bond dissociation energy of C–C σ-bonds presents a challenge to chemical conversions in organic synthesis, polymer degradation, and biomass conversion that require chemoselective C–C bond cleavage at room temperature. Dye-sensitized photoelectrochemical cells (DSPECs) incorporating molecular organic dyes could offer a means of using renewable solar energy to drive these types of energetically demanding chemoselective C–C bond cleavage reactions. This study reports the solar light-driven activation of a bicyclic aminoxyl mediator to achieve C–C bond cleavage in the aryl-ether linkage of a lignin model compound (LMC) at room temperature using a donor–π-conjugated bridge–acceptor (D–π–A) organic dye-based DSPEC system. Mesoporous TiO 2 photoanode surfaces modified with 5-[4-(diphenylamino)phenyl]thiophene-2-cyanoacrylic acid (DPTC) D–π–A organic dye were investigated along with a bicyclic aminoxyl radical mediator (9-azabicyclo[3,3,1]nonan-3-one-9-oxyl, KABNO) in solution with and without the presence of LMC. Photophysical studies of DPTC with KABNO showed intermolecular energy/electron transfer under 1 sun illumination (100 mW cm −2 ). Under illumination, the D–π–A type DPTC sensitized TiO 2 photoanodes facilitate the generation of the reactive oxoammonium species KABNO+ as a strong oxidizing agent, which is required to drive the oxidative C–C bond cleavage of LMC. The photoelectrochemical oxidative reaction in a complete DSPEC with KABNO afforded C–C bond cleavage products 2-(2-methoxyphenoxy)acrylaldehyde (94%) and 2,6-dimethoxy-1,4-benzoquinone (66%). This process provides a first report utilizing a D–π–A type organic dye in combination with a bicyclic nitroxyl radical mediator for heterogeneous photoelectrolytic oxidative cleavage of C–C σ-bonds, modeled on those found in lignin, at room temperature. 
    more » « less
  2. Herein, we report a novel method to obtain oxygenated chemicals and high-quality lignin from biomass in one-pot using a single step process. Plasma electrolysis of red oak was conducted by applying high-voltage alternating current electricity in γ-valerolactone using sulfuric acid as the electrolyte. Red oak was completely solubilized to produce levoglucosenone and furfural as the two major monomers with the respective yields of up to 44.9 mol% and 98.0 mol%. During the conversion, an oxidized lignin was also simultaneously produced in high purity. The valorization potential of the plasma electrolysis-derived lignin evaluated using the pyrolysis method showed that depolymerization of this lignin could produce significantly higher yields of phenolic monomers than the natural lignin or the lignin isolated during conventional solvolysis. Our investigation showed that benzylic carbon of the natural lignin was selectively modified during plasma electrolysis to limit the formation of interunit C–C bonds, significantly improving the subsequent lignin valorization to aromatic monomers. Overall, this study demonstrated a simple green approach to improve chemical production without using costly catalysts or tedious biomass fractionation. This study also presented a novel and highly efficient way to modify lignin for enhanced valorization. 
    more » « less
  3. Biomass fast pyrolysis has emerged as a highly promising technology for producing renewable fuels and chemicals. However, the inherent multi-scale and multiphase nature of the process and the heterogeneous nature of biomass feedstocks typically lead to low selectivity toward each bio-oil molecule, posing significant commercialization challenges. Molecular-level understanding of the biomass pyrolysis reaction kinetics considering the interactions between the main constituents (i.e., cellulose, hemicellulose, and lignin) is essential to advance the macroscopic design, scale-up, and optimization of the process. In this work, microreactor experiments were conducted to determine the effects of lignin structures on the yields of cellulose-derived products during pyrolysis. We show that levoglucosan formation is inhibited by the β-O-4 lignin linkages or catalyzed by the 5-5 linkages, glycolaldehyde formation is catalyzed by the β-O-4 linkages or inhibited by the 5-5 linkages, and 5-hydroxymethylfurfural formation is inhibited by either linkage. Density functional theory calculations reveal that these catalytic and inhibitory effects on cellulose fast pyrolysis are induced by noncovalent interactions between cellulose and lignin. The molecular-level picture of cellulose–lignin interactions uncovered in this work paves the way for further use of genetic engineering to grow new genotypes of biomass for selective production of value-added chemicals and machine learning approaches to obtain correlations between biomass structures and product yields for biomass fast pyrolysis. 
    more » « less
  4. Selective removal of oxygen from biomass-derived polyols is critical toward bridging the gap between biomass feedstocks and the production of commodity chemicals. In this work, we show that earth-abundant molybdenum oxide based heterogeneous catalysts are active, selective, and stable for the cleavage of vicinal C–O bonds in biomass-derived polyols. Catalyst characterization (Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)) shows that partially reduced MoOx centers are responsible for C–O bond cleavage and are generated in situ by hydrogen dissociated atoms over palladium (Pd) nanoparticles. We find that the support, TiO2, facilitates communication between the hydrogen dissociating metal and dispersed MoOx sites through hydrogen spillover. Reactivity studies using a biomass-derived model substrate (1,4-anhydroerythritol) show the effective removal of vicinal hydroxyls over MoOx-Pd/TiO2 producing tetrahydrofuran with >98% selectivity at 29% conversion. Catalyst stability is demonstrated upon cycling. These studies are critical toward the development of low-cost heterogeneous catalysts for sustainable hydrodeoxygenation of biobased polyols to platform chemicals. 
    more » « less
  5. The cleavage of lignin ether bonds via transfer hydrogenolysis remains a promising route for the valorization of lignin. To make this process efficient, a method would need to be developed that utilizes mild conditions and a renewable hydrogen donor solvent, in addition to avoiding high pressure of hydrogen. Herein, we demonstrate the efficient catalytic transfer hydrogenolysis of lignin model compounds possessing aromatic ether bonds, including α-O-4, β-O-4 and 4-O-5 linkages, using Pd-doped hydrotalcites as heterogeneous catalysts and ethanol as the hydrogen donor. Catalysts that can carry out transfer hydrogenolysis and decarbonylation in tandem are yet to be reported. Quantitative conversions and yields were realized for all model compounds studied, demonstrating the utility of the metal-doped hydrotalcites for this catalytic application. The system was applied to whole pine biomass to achieve delignification (86%) and a phenolic monomer yield of 39%. 
    more » « less