skip to main content

Search for: All records

Award ID contains: 1730576

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Undergraduate students of fluid mechanics bring a range of preconceptions to the classroom. The sometimes counterintuitive nature of fluid mechanics means that many of these preconceptions are, in fact, misconceptions. Such misconceptions can be hard to address and can persist even among nominally high-performing students. A pedagogical approach (i.e., predict, test, and reflect) is presented. The approach provides an effective structure for addressing and correcting misconceptions through the use of low-cost hands-on activities that students can quickly and easily undertake during regular class time. The activities all have the same structure of describing the activity, having students make a predictionmore »based on their intuition/prior experience, testing that prediction using simple, low-cost activities, reflecting on the success or failure of the prior prediction, and analysis of the activity to illustrate the correct conception of the flow. Course evaluations indicate that students have found this approach very helpful in improving their conceptual understanding in an introductory engineering fluid mechanics class.« less
    Free, publicly-accessible full text available April 1, 2023
  2. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized facultymore »representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments.« less
    Free, publicly-accessible full text available February 20, 2023
  3. Understanding the underlying psychological constructs that affect undergraduate engineering students’ academic achievement and persistence can inform curricular and programmatic changes in engineering education, with the goal of increasing access and advancement in engineering for a diverse population of students. As part of a larger study examining student experiences in a civil engineering department undergoing curricular and cultural changes, this quantitative study investigated the relationship between goal orientation, agency, and time-oriented motivation, differences in this relationship across academic years, and potential influences from personality types. The larger project seeks to examine the motivation, identity, and sense of belonging for undergraduate civilmore »engineering students; this paper seeks to construct a conceptual model explaining the interactive nature of some of these constructs. A previously tested and established survey that draws from multiple theories of motivation and other affective factors such as agency and identity, and that includes Big 5 personality constructs, was used to collect data from second, third-and fourth-year civil engineering students over a two-year period. Prior studies have focused on the instrument’s latent constructs with sense of belonging. However, no analysis has been conducted to examine how some of the constructs influence each other. Specific latent constructs of goal orientation, agency (students’ beliefs that their career in science or engineering can lead to positive effects on the world), FTP, and personality were selected for secondary data analysis based on theory presented in the literature about relationships between motivation, goal setting, agency, and student perceptions of their future. The sample size of respondents was 843; data cleaning and deletion of missing data (65cases; 7.7%) resulted in a final sample size of 778(92.3% of the original data). This included328 second year, 294 third year and 156 fourth year students. Statistical analyses and modeling included bivariate correlational analysis, MANOVA and MANCOVA. Results indicated significant correlation between goal orientation, agency, and time-oriented motivation. Furthermore, differences in these constructs between academic years and personality type influenced the relationship. FTP differed between sophomores and seniors, with seniors having higher scores, suggesting motivation increases as time in the program increases. Personality significantly influenced these relationships in different ways but had the strongest effect on agency. The findings that certain types of people are not only motivated to go into civil engineering but believe their major will make a difference in the world, have implications for educational practice. Results align with current literature but also shed light onto the effects of personality on time-oriented motivation and agency, expanding theory in engineering education. Further research is needed to determine if the effects of personality hold true for other engineering and science majors.« less
  4. As social justice issues facing our nation continue to be placed in the foreground of everyday life, it is important to understand how undergraduate civil engineering students perceive and understand relations between social justice and our infrastructure systems. Additionally, as more civil engineering undergraduate programs increase the emphasis on ethics and equity issues in their curricula, we must also seek to understand students’ awareness of their influence, as civil engineering professionals, to improve infrastructure systems that contribute to injustice and inequity. This paper presents findings from a pilot study conducted as part of an NSF-funded grant implementing cultural and curricularmore »changes in a medium-sized civil engineering department in the southeast. Drawing on frameworks that examine how individuals critically understand systems of oppression, and the justification used to explain these systems this work examined student perceptions of inequities in societal infrastructure systems. The present study was guided by the following research questions: (1) Are undergraduate civil engineering students critically aware of inequities in society’s infrastructure systems? (2) To what degree are undergraduate civil engineering students comfortable challenging the status quo? (3) Is there an association between students’ critical awareness of inequitable infrastructure systems and their agency to promote systemic change as civil engineering professionals? Study data included survey responses to validated scales measuring: critical consciousness, system justification beliefs, social empathy, and sociopolitical control beliefs. New instrumentation was also piloted assessing equity-related perceptions and beliefs about civil engineering and infrastructure systems. Participants were junior and senior undergraduate civil engineering students (n = 21) enrolled in a professional development, community, and strategic change course, with data collected throughout the Fall 2020 semester. Results suggest that students did have awareness of infrastructure inequities and, on average, did not have strong system justification beliefs. However, there was not an association between students’ awareness of inequities and their agency beliefs about promoting systemic change as civil engineers. After presenting study results, we discuss implications of study results and propose directions for future research.« less
  5. Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to asmore »the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed.« less
  6. When examining factors affecting student academic success, it is important to consider how these factors interact with one another. Students’ affective attributes are complex in nature; thus, research methods and analyses should holistically examine how these attributes interact, not simply as a set of distinct constructs. Prior research into engineering students’ affective attributes, in which we used a validated survey to assess student motivation, identity, goal orientation, sense of belonging, career outcome expectations, grit and personality traits, demonstrated a positive correlation between perceptions of belongingness in engineering and time spent in the program. Other prior research has examined interactions betweenmore »affective attributes, for example, engineering identity as a predictor of grit (consistency of interest). However, more work is needed to examine the complex relationships between sense of belonging, engineering identity, future career outcome expectations and motivation, particularly for students in an engineering program undergoing curricular change. This paper describes a confirmatory factor analysis and structural equation model to examine how engineering identity, career outcome expectations and time-oriented motivation (specifically, students’ future time perspectives, or FTP) impact their sense of belonging in engineering, with grit (consistency of interest) as a moderator of these relationships. To conduct these analyses, we used survey data collected over two years from sophomores, juniors, and seniors enrolled in an undergraduate civil engineering program (2017-18, n=358; 2018-19, n=556). Based on descriptive statistics and initial statistical comparisons, we confirmed our prior findings that students’ sense of belonging at the course level increased with time in the program (from sophomore to senior year), and that engineering identity increased with time in the program as well. In addition, we observed that seniors had higher perceived instrumentality, a sub-construct of FTP indicating their perceived usefulness of their courses in reaching their future goals, than sophomores and juniors. We found that course belongingness and FTP have the strongest influence on belongingness compared to other affective attributes we assessed. When identity and motivation were factored in, career outcome expectations were not influential to engineering belongingness. Finally, we found that time-oriented motivation (FTP) was also a mediator of this relationship through its influence on grit (consistency of interest).« less
  7. As part of a National Science Foundation-funded initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Clemson’s NSF Revolutionizing Engineering Departments (RED) program is called the Arch Initiative. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. Through a project-based learning approach, Springer courses mimic the senior capstone experience by immersing students in a semester-long practical application of civil engineering, exposing them to concepts andmore »tools in a way that challenges students to develop new knowledge that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first Springer course introduced students to three civil engineering sub-disciplines: construction management, water resources, and transportation. The remaining sub-disciplines are covered in a follow-on Springer 2 pilot. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. The feedback from the SALG indicated positive attitudes towards course activities and content. Challenges for full-scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed.« less
  8. As part of an NSF IUSE/PFE:RED grant, the Clemson University Glenn Department of Civil Engineering instituted a peer mentoring program, called CE-MENT to attract and support students through a key transition point in the curriculum between general engineering and entry into the major. The program name has a dual meaning, as cement is defined as a binding agent or something serving to unite firmly. As freshmen, underrepresented minorities and females are supported by the Programs for Educational Enrichment and Retention (PEER) and Women in Science and Engineering (WISE). However, these programs do not carry forward as students leave the commonmore »first year in General Engineering and move into their respective majors. Through the involvement of junior and senior engineering students as peer mentors for incoming sophomore students in the engineering department, the mentoring program provides valuable one-on-one guidance and contributes positively to the engineering community. The peer mentoring program was formulated to foster interaction role modeling and interdependencies among students. Studies show that such interactions and interdependencies foster students' positive perceptions of their future selves in the profession. The peer mentoring program provides the opportunity to create motivational preferences for collaboration, and to foster personal motivation for academic achievement. Specifically, the program sought to determine: the change in students' attitudes toward peer mentoring activities during their years of engineering study (from mentee to mentor); how participating in peer mentoring affects students' satisfaction with program experiences (i.e., transition, belonging, and academic success); and their intent to remain in the program.« less