skip to main content


Title: Progress, Opportunities, and Challenges of Magneto-Plasmonic Nanoparticles under Remote Magnetic and Light Stimulation for Brain-Tissue and Cellular Regeneration
Finding curable therapies for neurodegenerative disease (ND) is still a worldwide medical and clinical challenge. Recently, investigations have been made into the development of novel therapeutic techniques, and examples include the remote stimulation of nanocarriers to deliver neuroprotective drugs, genes, growth factors, and antibodies using a magnetic field and/or low-power lights. Among these potential nanocarriers, magneto-plasmonic nanoparticles possess obvious advantages, such as the functional restoration of ND models, due to their unique nanostructure and physiochemical properties. In this review, we provide an overview of the latest advances in magneto-plasmonic nanoparticles, and the associated therapeutic approaches to repair and restore brain tissues. We have reviewed their potential as smart nanocarriers, including their unique responsivity under remote magnetic and light stimulation for the controlled and sustained drug delivery for reversing neurodegenerations, as well as the utilization of brain organoids in studying the interaction between NPs and neuronal tissue. This review aims to provide a comprehensive summary of the current progress, opportunities, and challenges of using these smart nanocarriers for programmable therapeutics to treat ND, and predict the mechanism and future directions.  more » « less
Award ID(s):
2021081 1851635
NSF-PAR ID:
10336950
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
12
Issue:
13
ISSN:
2079-4991
Page Range / eLocation ID:
2242
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two‐way interface between man‐made devices and physiological systems at the molecular level. With the recent development of room‐temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real‐time, targeted delivery across the blood–brain barrier (BBB), tissue regeneration, high‐specificity cancer cures, molecular‐level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High‐specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs‐based high‐specificity targeted drug delivery via application of d.c. and a.c. magnetic fields.

    This article is categorized under:

    Nanotechnology Approaches to Biology > Nanoscale Systems in Biology

    Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease

    Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease

    Therapeutic Approaches and Drug Discovery > Emerging Technologies

     
    more » « less
  2. Abstract

    Almost 1000 million people have recently been diagnosed with a mental health or substance disorder (Ritchie & Roser, 2018). Psychiatric disorders, and their treatment, represent a big burden to the society worldwide, causing about 8 million deaths per year (Walker et al., 2015). Daily progress in science enables continuous advances in methods to treat patients; however, the brain remains to be the most unknown and complex organ of the body. There is a growing demand for innovative approaches to treat psychiatric as well as neurodegenerative disorders, disorders with unknown curability, and treatments mostly designed to slow disease progression. Based on that need and the peculiarity of the central nervous system, in the present review, we highlight the handicaps of the existing approaches as well as discuss the potential of the recently introduced magnetoelectric nanoparticles (MENPs) to become a game‐changing tool in future applications for the treatment of brain alterations. Unlike other stimulation approaches, MENPs have the potential to enable a wirelessly controlled stimulation at a single‐neuron level without requiring genetic modification of the neural tissue and no toxicity has yet been reported. Their potential as a new tool for targeting the brain is discussed.

    This article is categorized under:

    Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease

    Therapeutic Approaches and Drug Discovery > Neurological Disease

     
    more » « less
  3. Abstract

    One of the major shortcomings of nano carriers‐assisted cancer therapeutic strategies continues to be the inadequate tumor penetration and retention of systemically administered nanoformulations and its off‐target toxicity. Stromal parameters‐related heterogeneity in enhanced permeability and retention effect and physicochemical properties of the nanoformulations immensely contributes to their poor tumor extravasation. Herein, a novel tumor targeting strategy, where an intratumorally implanted micromagnet can significantly enhance accumulation of magneto‐plasmonic nanoparticles (NPs) at the micromagnet‐implanted tumor in bilateral colorectal tumor models while limiting their off‐target accumulation, is demonstrated. To this end, novel multimodal gold/iron oxide NPs comprised of an array of multifunctional moieties with high therapeutic, sensing, and imaging potential are developed. It is also discovered that cancer cell targeted NPs in combination with static magnetic field can selectively induce cancer cell death. A multimodal caspase‐3 nanosensor is also developed for real‐time visualization of selective induction of apoptosis in cancer cells. In addition, the photothermal killing capability of these NPs in vitro is evaluated, and their potential for enhanced photothermal ablation in tissue samples is demonstrated. Building on current uses of implantable devices for therapeutic purposes, this study envisions the proposed micromagnet‐assisted NPs delivery approach may be used to accelerate the clinical translation of various nanoformulations.

     
    more » « less
  4. Abstract

    A major obstacle facing brain diseases such as Alzheimer's disease, multiple sclerosis, brain tumors, and strokes is the blood–brain barrier (BBB). The BBB prevents the passage of certain molecules and pathogens from the circulatory system into the brain. Therefore, it is nearly impossible for therapeutic drugs to target the diseased cells without the assistance of carriers. Nanotechnology is an area of growing public interest; nanocarriers, such as polymer‐based, lipid‐based, and inorganic‐based nanoparticles can be engineered in different sizes, shapes, and surface charges, and they can be modified with functional groups to enhance their penetration and targeting capabilities. Hence, understanding the interaction between nanomaterials and the BBB is crucial. In this Review, the components and properties of the BBB are revisited and the types of nanocarriers that are most commonly used for brain drug delivery are discussed. The properties of the nanocarriers and the factors that affect drug delivery across the BBB are elaborated upon in this review. Additionally, the most recent developments of nanoformulations and nonconventional drug delivery strategies are highlighted. Finally, challenges and considerations for the development of brain targeting nanomedicines are discussed. The overall objective is to broaden the understanding of the design and to develop nanomedicines for the treatment of brain diseases.

     
    more » « less
  5. null (Ed.)
    Nanotechnology platforms, such as nanoparticles, liposomes, dendrimers, and micelles have been studied extensively for various drug deliveries, to treat or prevent diseases by modulating physiological or pathological processes. The delivery drug molecules range from traditional small molecules to recently developed biologics, such as proteins, peptides, and nucleic acids. Among them, proteins have shown a series of advantages and potential in various therapeutic applications, such as introducing therapeutic proteins due to genetic defects, or used as nanocarriers for anticancer agents to decelerate tumor growth or control metastasis. This review discusses the existing nanoparticle delivery systems, introducing design strategies, advantages of using each system, and possible limitations. Moreover, we will examine the intracellular delivery of different protein therapeutics, such as antibodies, antigens, and gene editing proteins into the host cells to achieve anticancer effects and cancer vaccines. Finally, we explore the current applications of protein delivery in anticancer treatments. 
    more » « less