skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Theoretical and experimental studies of transcranial alternating current stimulation (tACS) beating signal in phantoms and mice brains
Brain simulation techniques have demonstrated undisputable therapeutic effects on neural diseases. Invasive stimulation techniques like deep brain stimulation (DBS) and noninvasive techniques like transcranial magnetic stimulation (TMS) have been approved by FDA as treatments for many drug resist neural disorders and diseases. Developing noninvasive, deep, and targeted brain stimulation techniques is currently one of the important tasks in brain researches. Transcranial direct current stimulation (tDCS) and transcranial alternative current stimulation (tACS) techniques have the advantages of low cost and portability. However, neither of them can produce targeted stimulation due to lacking of electrical field focusing mechanism. Recently, Grossman et al. reported using the down beating signals of two tACS signals to accomplish focused stimulation. By sending two sine waves running at slightly different high frequencies (~2kHz), they demonstrated that they can modulate a “localized” neuron group at the difference frequency of the two sine waves and at the same time avoid excitation of neurons at other locations. As a result, equivalent focusing effect was accomplished by such beating mechanism. In this work, we show neither theoretically nor experimentally the beating mechanism can produce “focusing effect” and the beating signal spread globally across the full brain. The localized modulation effect likely happened right at the electrode contact sites when the electrode contact area is small and the current is concentrated. We conclude that to accomplish noninvasive and focused stimulation at current stage the only available tool is the focused TMS system we recently demonstrated.  more » « less
Award ID(s):
1631820
PAR ID:
10063437
Author(s) / Creator(s):
Date Published:
Journal Name:
Proc. SPIE 10662, Smart Biomedical and Physiological Sensor Technology XV, 106620D
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transcranial magnetic stimulation (TMS) is one of the most widely used noninvasive brain stimulation methods. It has been utilized for both treatment and diagnosis of many neural diseases, such as neuropathic pain and loss of function caused by stroke. Existing TMS tools cannot deliver focused electric field to targeted penetration depth even though many important neurological disorders are originated from there. A breakthrough is needed to achieve noninvasive, focused brain stimulation. We demonstrated using magnetic shield to achieve magnetic focusing without sacrificing significant amount of throughput. The shield is composed of multiple layers of copper ring arrays, which utilize induced current to generate counter magnetic fields. We experimentally set up a two-pole stimulator system to verify device simulation. A transient magnetic field probe was used for field measurements. The focusing effect highly depends on the geometric design of shield. A tight focal spot with a diameter of smaller than 5 mm (plotted in MATLAB contour map) can be achieved by using copper ring arrays. With properly designed array structures and ring locations, the combined original and induced counter fields can produce a tightly focused field distribution with enhanced field strength at a depth of 7.5 mm beyond the shield plane, which is sufficient to reach many deep and critical parts of a mouse brain. 
    more » « less
  2. Transcranial magnetic stimulation (TMS) is widely used for noninvasive brain stimulation. However, existing TMS tools cannot deliver targeted neural stimulation to deep brain regions, even though many important neurological disorders originate from there. To design TMS tools capable of delivering deep and focused stimulation, we have developed both electric and magnetic field probes to evaluate and improve new designs and calibrate products. Previous works related to magnetic field measurement had no detailed description of probe design or optimization. In this work, we demonstrated a magnetic field probe made of a cylindrical inductor and an electrical field probe modified from Rogowski coil structure. Both have much smaller size and higher directivity than commercial dipole probes. Using probe, we can calibrate and monitor any new types of TMS coil or array design and verify measured results with the other probe. We mathematically analyze their characteristics and performance and obtained a two-dimensional vector plot of the induced electric field, which matched the measured results from the second type of probe. A commercial circular coil and a figure-8 coil, with relatively complex vector field distribution, were used as examples to demonstrate the high-resolution and accurate measurement capability of our probes. 
    more » « less
  3. Understanding the relationship between cognition and programming outcomes is important: it can inform interventions that help novices become experts faster. Neuroimaging techniques can measure brain activity, but prior studies of programming report only correlations. We present the first causal neurological investigation of the cognition of programming by using Transcranial Magnetic Stimulation (TMS). TMS permits temporary and noninvasive disruption of specific brain regions. By disrupting brain regions and then measuring programming outcomes, we discover whether a true causal relationship exists. To the best of our knowledge, this is the first use of TMS to study software engineering. Where multiple previous studies reported correlations, we find no direct causal relationships between implicated brain regions and programming. Using a protocol that follows TMS best practices and mitigates for biases, we replicate psychology findings that TMS affects spatial tasks. We then find that neurostimulation can affect programming outcomes. Multi-level regression analysis shows that TMS stimulation of different regions significantly accounts for 2.2% of the variance in task completion time. Our results have implications for interventions in education and training as well as research into causal cognitive relationships. 
    more » « less
  4. Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that modulates brain activity by inducing electric fields in the brain. Real-time, state-dependent stimulation with TMS has shown that neural oscillation phase modulates corticospinal excitability. However, such motor evoked potentials (MEPs) only indirectly reflect motor cortex activation and are unavailable at other brain regions of interest. The direct and secondary cortical effects of phase-dependent brain stimulation remain an open question. In this study, we recorded the cortical responses during single-pulse TMS using electroencephalography (EEG) concurrently with the MEP measurements in 20 healthy human volunteers (11 female). TMS was delivered at peak, rising, trough, and falling phases of mu (8–13 Hz) and beta (14–30 Hz) oscillations in the motor cortex. The cortical responses were quantified through TMS evoked potential components N15, P50, and N100 as peak-to-peak amplitudes (P50-N15 and P50-N100). We further analyzed whether the prestimulus frequency band power was predictive of the cortical responses. We demonstrated that phase-specific targeting modulates cortical responses. The phase relationship between cortical responses was different for early and late responses. In addition, pre-TMS mu oscillatory power and phase significantly predicted both early and late cortical EEG responses in mu-specific targeting, indicating the independent causal effects of phase and power. However, only pre-TMS beta power significantly predicted the early and late TEP components during beta-specific targeting. Further analyses indicated distinct roles of mu and beta power on cortical responses. These findings provide insight to mechanistic understanding of neural oscillation states in cortical and corticospinal activation in humans. 
    more » « less
  5. In recent years, there is an increasing interest in noninvasive treatments for neurological disorders like Alzheimer and Depression. Transcranial magnetic stimulation (TMS) is one of the most effective methods used for this purpose. The performance of TMS highly depends on the coils used for the generation of magnetic field and induced electric field particularly their designs affecting depth and focality tradeoff characteristics. Among a variety of proposed and used TMS coil designs, circular coils are commonly used both in research and medical and clinical applications. In current study, we focus on changing the outer and inner sizes (diameter) and winding turns of ring coils and try to reach deeper brain regions without significant field strength decay. The induced electric field and the decay rate of the generated field with depth were studied with finite element method calculations. The results of the performed simulations indicate that larger diameter coils have a larger equivalent field emission aperture and produce larger footprint of induced electric field initially. However, their emission solid angles are smaller and, as a result, the field divergence or the decay rates of the generated field with depth are smaller as well, which give them a good potential to perform better for deep brain stimulation compared with that of smaller coil. 
    more » « less