skip to main content

Title: Quantitative Surface-Enhanced Spectroscopy
Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility. After a brief introduction to Raman scattering and SERS, impacts of surface selection rules and enhancement mechanisms are discussed as they relate to the observation of activation and deactivation of normal Raman modes in SERS. Next, experimental conditions that can be used to tune molecular affinity to and density near SERS substrates are summarized and considered while tuning these parameters is conveyed. Finally, successful examples of quantitative SERS detection are discussed, and future opportunities are outlined.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Annual Review of Physical Chemistry
Page Range or eLocation-ID:
141 to 162
Sponsoring Org:
National Science Foundation
More Like this
  1. Numerous fatty acid receptors have proven to play critical roles in normal physiology. Interactions among these receptor types and their subsequent membrane trafficking has not been fully elucidated, due in part to the lack of efficient tools to track these cellular events. In this study, we fabricated the surface-enhanced Raman scattering (SERS)-based molecular sensors for detection of two putative fatty acid receptors, G protein-coupled receptor 120 (GPR120) and cluster of differentiation 36 (CD36), in a spatiotemporal manner in single cells. These SERS probes allowed multiplex detection of GPR120 and CD36, as well as a peak that represented the cell. This multiplexed sensing system enabled the real-time monitoring of fatty acid-induced receptor activation and dynamic distributions on the cell surface, as well as tracking of the receptors’ internalization processes on the addition of fatty acid. Increased SERS signals were seen in engineered HEK293 cells with higher fatty acid concentrations, while decreased responses were found in cell line TBDc1, suggesting that the endocytic process requires innate cellular components. SERS mapping results confirm that GPR120 is the primary receptor and may work synergistically with CD36 in sensing polyunsaturated fatty acids and promoting Ca2+mobilization, further activating the process of fatty acid uptake. The abilitymore »to detect receptors’ locations and monitor fatty acid-induced receptor redistribution demonstrates the specificity and potential of our multiplexed SERS imaging platform in the study of fatty acid–receptor interactions and might provide functional information for better understanding their roles in fat intake and development of fat-induced obesity.

    « less
  2. Surface-enhanced Raman scattering (SERS) from gold and silver nanoparticles suspended in solution enables a more quantitative level of analysis relative to SERS from aggregated nanoparticles and roughened metal substrates. This is due to the more predictable and consistent near field enhancement regions created by isolated nanoparticles, and to averaging over the many nanoparticles that diffuse through the excitation beam during the measurement. However, we find that localized heating of the solution by the focused excitation leads to thermophoresis which alters the nanorod concentration in the focal volume and therefore impacts quantitative analysis. Since many phenomena may impact the Raman signal, we record both the Rayleigh and Raman scattering from gold nanoparticle solutions. This allows us to distinguish molecular processes from depletion of nanoparticles in the excitation beam. We observe that the concentration of nanorods can deplete to less than 50% of its original value over 100 second timescale, which are consistent with a thermophoretic effect driving nanoparticles from the beam spot. We also find that the particle motion drives convection within the sample cell that further contributes to signal instabilities.
  3. Detection of illicit drug residues from wastewater provides a new route toward community-level assessment of drug abuse that is critical to public health. However, traditional chemistry analytical tools such as high-performance liquid chromatography in tandem with mass spectrometry (HPLC-MS) cannot meet the large-scale testing requirement in terms of cost, promptness, and convenience of use. In this article, we demonstrated ultra-sensitive and portable surface-enhanced Raman scattering sensing (SERS) of fentanyl, a synthetic opioid, from sewage water and achieved quantitative analysis through principal component analysis and partial least-squares regression. The SERS substrates adopted in this application were synthesized by in situ growth of silver nanoparticles on diatomaceous earth films, which show ultra-high sensitivity down to 10 parts per trillion in artificially contaminated tap water in the lab using a commercial portable Raman spectrometer. Based on training data from artificially contaminated tap water, we predicted the fentanyl concentration in the sewage water from a wastewater treatment plant to be 0.8 parts per billion (ppb). As a comparison, the HPLC-MS confirmed the fentanyl concentration was below 1 ppb but failed to provide a specific value of the concentration since the concentration was too low. In addition, we further proved the validity of our SERSmore »sensing technique by comparing SERS results from multiple sewage water treatment plants, and the results are consistent with the public health data from our local health authority. Such SERS sensing technique with ultra-high sensitivity down to sub-ppb level proved its feasibility for point-of-care detection of illicit drugs from sewage water, which is crucial to assess public health.« less
  4. Verma, Prabhat ; Suh, Yung Doug (Ed.)
    Advances in nanotechnology enable the detection of trace molecules from the enhanced Raman signal generated at the surface of plasmonic nanoparticles. We have developed technology to enable super-resolution imaging of plasmonic nanoparticles, where the fluctuations in the surface enhanced Raman scattering (SERS) signal can be analyzed with localization microscopy techniques to provide nanometer spatial resolution of the emitting molecule’s location. Additional work now enables the super-resolved SERS image and the corresponding spectrum to be acquired simultaneously. Here we will discuss how this approach can be applied to provide new insights into biological cells.
  5. A series of poly( N -acryloyl glycinamide) (pNAGA) polymers were synthesized and studied as capture agents for surface-enhanced Raman scattering (SERS) detection of aflatoxin B1 (AFB1), a highly carcinogenic food-borne toxin. Four molecular weights of pNAGA were synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization to study the dependence of affinity agent efficacy on chain length for this AFB1 sensing platform. Isothermal titration calorimetry (ITC) was used to verify the sign and magnitude of the enthalpic effects involved in polymer–AFB1 interactions in solution and to understand the effects of pNAGA chain length on AFB1 noncovalent binding. pNAGA–AFB1 interactions were found to be exothermic, and longer pNAGA chains generally resulted in smaller enthalpy decreases per repeat unit. With pNAGA 22 being thermodynamically the strongest affinity agent, we hypothesize that AFB1 affinity is determined by a balance between the configurational restrictions in pNAGA chains and the enthalpic advantage of binding AFB1. SERS spectral changes observed following AFB1 exposure were used to evaluate the influence of polymer molecular weight (2.0–5.2 kDa), order of attachment (pre- vs. post- functionalization of the substrate) and attachment chemistry (thiol vs. trithiocarbonate) on the sensitivity of AFB1 detection. The method by which target, polymer affinity agent, and signal transductionmore »mechanism are combined was found to have significant impacts on the achieved sensitivity. The most effective polymer chain length (pNAGA 22 ), anchoring chemistry (thiol), and polymer/toxin assembly scheme (in-solution) allowed detection of 10 ppb AFB1 in water (below the FDA regulatory limit of 20 ppb), a hundred-fold improvement over SERS sensing without the pNAGA affinity agent.« less