skip to main content


Title: Super-resolution SERS spectral bioimaging
Advances in nanotechnology enable the detection of trace molecules from the enhanced Raman signal generated at the surface of plasmonic nanoparticles. We have developed technology to enable super-resolution imaging of plasmonic nanoparticles, where the fluctuations in the surface enhanced Raman scattering (SERS) signal can be analyzed with localization microscopy techniques to provide nanometer spatial resolution of the emitting molecule’s location. Additional work now enables the super-resolved SERS image and the corresponding spectrum to be acquired simultaneously. Here we will discuss how this approach can be applied to provide new insights into biological cells.  more » « less
Award ID(s):
2107791
NSF-PAR ID:
10414426
Author(s) / Creator(s):
; ;
Editor(s):
Verma, Prabhat; Suh, Yung Doug
Date Published:
Journal Name:
SPIE Nanoscience + Engineering
Volume:
1220304
Page Range / eLocation ID:
1220304-1 - 1220304-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Diatoms are single‐celled algae that biologically fabricate nanostructured silica shells with ordered pore arrays called frustules that resemble a 2D photonic crystal. A monolayer ofPinnulariafrustules isolated from cell culture is deposited on a glass substrate and then conformally coated with silver nanoparticles (AgNPs) to serve as a nanostructured thin film for ultrathin layer chromatography (UTLC). Malachite green and Nile red are resolved in toluene mobile phase and the separated analytes are profiled micro‐Raman spectroscopy, where plasmonic AgNPs provide surface‐enhanced Raman scattering (SERS). The AgNP‐diatom frustule monolayer improves SERS detection of malachite green by an average factor of 1.8 ± 0.1 over the plasmonic AgNP layer on glass. Analysis of hot spots on the AgNP‐diatom frustule monolayer reveals that nearly 20% of the SERS active area intensifies the SERS signal at least tenfold over the SERS signal for AgNP on glass. Diatom‐SERS enhancement is attributed to guided‐mode resonances of the Raman laser source, which in turn further enhances the localized surface plasmonic resonance from AgNPs. Overall, the AgNP‐diatom frustule monolayer thin film is a new functional material that uniquely enables separation of analytes by UTLC, quantitative SERS detection of separated analytes, and photonic enhancement of the SERS signals.

     
    more » « less
  2. Surface-enhanced Raman scattering (SERS) is a sensitive analytical technique capable of magnifying the vibrational intensity of molecules adsorbed onto the surface of metallic nanostructures. Various solution-based SERS-active metallic nanostructures have been designed to generate substantial SERS signal enhancements. However, most of these SERS substrates rely on the chemical aggregation of metallic nanostructures to create strong signals. While this can induce high SERS intensities through plasmonic coupling, most chemically aggregated assemblies suffer from poor signal reproducibility and reduced long-term stability. To overcome these issues, here we report for the first time the synthesis of gold core–satellite nanoparticles (CSNPs) for robust SERS signal generation. The novel CSNP assemblies consist of a 30 nm spherical gold core linked to 18 nm satellite particles via linear heterobifunctional thiol–amine terminated PEG chains. We explore the effects that the varying chain lengths have on SERS hot-spot generation, signal reproducibility and long-term activity. The chain length was varied by using PEGs with different molecular weights (1000 Da, 2000 Da, and 3500 Da). The CSNPs were characterized via UV-Vis spectrophotometry, transmission electron microscopy (TEM), ζ -potential measurements, and lastly SERS measurements. The versatility of the synthesized SERS-active CSNPs was revealed through characterization of optical stability and SERS enhancement at 0, 1, 3, 5, 7 and 14 days. 
    more » « less
  3. Abstract

    Acoustofluidics, the fusion of acoustics and microfluidic techniques, has recently seen increased research attention across multiple disciplines due in part to its capabilities in contactless, biocompatible, and precise manipulation of micro‐/nano‐objects. Herein, a bimodal signal amplification platform which relies on acoustofluidics‐induced enrichment of nanoparticles is introduced. The dual‐function biosensor can perform sensitive immunofluorescent or surface‐enhanced Raman spectroscopy (SERS) detection. The platform functions by using surface acoustic waves to concentrate nanoparticles at either the center or perimeter of a glass capillary; the concentration location is adjusted simply by varying the input frequency. The immunofluorescence assay is achieved by concentrating fluorescent analytes and functionalized nanoparticles at the center of the microchannel, thereby improving the visibility of the fluorescent output. By modifying the inner wall of the glass capillary with plasmonic Ag nanoparticle‐deposited ZnO nanorod arrays and focusing analytes toward the perimeter of the microchannel, SERS sensing using the same device setup is achieved. Nanosized exosomes are used as a proof‐of‐concept to validate the performance of the acoustofluidic bimodal biosensor. With its sample‐enrichment functionality, bimodal sensing, short processing time, and minute sample consumption, the acoustofluidic chip holds great potential for the development of lab‐on‐a‐chip based analysis systems in many real‐world applications.

     
    more » « less
  4. Herein, deep learning (DL) is used to predict the structural parameters of Ag nanohole arrays (NAs) for spectrum‐driving and color‐driving plasmonic applications. A dataset of transmission spectra and structural parameters of NAs is generated using finite‐difference time‐domain (FDTD) calculations and is converted to vivid structural colors using the corresponding transmission spectrum. A bidirectional neural network is used to train the transmission spectrum and structural color together. The accuracy of predicting the structural parameters using a desired spectrum is tested and found to be up to 0.99, with a determination coefficient of reproducing the desired spectrum and color to be 0.97 and 0.96, respectively. These values are higher compared to those when only training for spectrum, but requiring less training time. This strategy is able to inverse design the NAs in less than 1 s to maximize surface‐enhanced Raman scattering (SERS) enhancement by matching transmission resonance and laser excitation wavelength, and accurately regenerate colored images in 7.5 s, allowing for nanoscale printing at a resolution of approximately 100 000 dots in−1. This work has important implications for the efficient design of nanostructures for various plasmonic applications, such as plasmonic sensors, optical filters, metal‐enhanced fluorescence, SERS, and super‐resolution displays.

     
    more » « less
  5. Abstract

    Nucleic acid biosensing technologies have the capability to provide valuable information in applications ranging from medical diagnostics to environmental sensing. The unique properties of plasmonic metallic nanoparticles have been used for sensing purposes and among them, plasmonic sensors based on surface-enhanced Raman scattering (SERS) offer the advantages of sensitive and muliplexed detection owing to the narrow bandwidth of their characteristic Raman spectral features. This paper describes current applications that employ the unique SERS-based inverse molecular sentinel (iMS) nanobiosensors developed in our laboratory. Herein, we demonstrate the use of label-free iMS nanoprobes for detecting specific nucleic acid biomarkers in a wide variety of applications from cancer diagnostics to genetic monitoring for plant biology in renewable biofuel research.

     
    more » « less