skip to main content


Title: Recognition of Subtle Bias Tempers Explicit Gender Stereotyping Among STEM Students.
The overarching goal of this research project is to provide a novel contribution to perceived bias research by testing the hypothesis that mere exposure to instances of subtle gender bias in STEM settings can have important effects on observers, depending on whether they recognize such events as gender bias or do not see it as bias. The goal of the first of five experiments was to assess how witnessing subtle gender bias events influences explicit stereotype activation among people who recognize the events as gender stereotyping as well as those who do not. We utilized video materials that were developed and tested in our previous NSF research that show a group of four engineering students, 2 women and 2 men, working together on an engineering design task. There are two versions of the video: one in which the students engaged in subtle gender bias (bias version), and one in which the students engaged in neutral interactions (control version). Over 400 participants were recruited from a large midwestern research university from computer science and engineering majors in which 30% or fewer majors are women. The survey included assessments of perceptions of gender stereotyping in the video, general stereotype endorsement and STEM stereotype endorsement, and three individual difference measures (gender-based rejection sensitivity, sexism sensitivity and negative emotionality) used as covariates in analyses. We found that participants who saw the bias video reported greater explicit stereotyping when they failed to recognize gender bias in the video. When they did recognize bias, they reported explicit stereotyping at levels similar to those in the control condition. This pattern suggests that exposure to subtle gender bias events may have activated gender stereotypes, but when participants recognized the events as gender bias, they tempered their explicit stereotyping.  more » « less
Award ID(s):
1954908
NSF-PAR ID:
10337279
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Zone 1 Conference of the American Society for Engineering Education
ISSN:
2332-368X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The overarching goal of this research project is to provide a novel contribution to perceived bias research by testing the hypothesis that mere exposure to instances of subtle gender bias in STEM settings can have important effects on observers, depending on whether they recognize such events as gender bias or do not see it as bias. The goal of the first of five experiments was to assess how witnessing subtle gender bias events influences explicit stereotype activation among people who recognize the events as gender stereotyping as well as those who do not. We utilized video materials that were developed and tested in our previous NSF research that show a group of four engineering students, 2 women and 2 men, working together on an engineering design task. There are two versions of the video: one in which the students engaged in subtle gender bias (bias version), and one in which the students engaged in neutral interactions (control version). Over 400 participants were recruited from a large midwestern research university from computer science and engineering majors in which 30% or fewer majors are women. The survey included assessments of perceptions of gender stereotyping in the video, general stereotype endorsement and STEM stereotype endorsement, and three individual difference measures (gender-based rejection sensitivity, sexism sensitivity and negative emotionality) used as covariates in analyses. We found that participants who saw the bias video reported greater explicit stereotyping when they failed to recognize gender bias in the video. When they did recognize bias, they reported explicit stereotyping at levels similar to those in the control condition. This pattern suggests that exposure to subtle gender bias events may have activated gender stereotypes, but when participants recognized the events as gender bias, they tempered their explicit stereotyping. 
    more » « less
  2. Engineering is a creative profession where diverse perspectives of both men and women are crucial to the field. The importance of better understanding the pipeline of female students into engineering, and the path to their success in the major is evident. In 2017, women comprised approximately 20% of engineering graduates, up from 18% in 1997, and 15% never entered the engineering workforce. In 2019, women comprised 48% of the workforce, 34% of the STEM workforce, and only 16% of practicing engineers, a 3% increase from 2009. In an effort to better understand these disparities, this mixed methods research investigated the creative self-efficacy (CSE) of women engineering majors and their beliefs about creativity in relation to lived experiences and explores the research question: In what ways do undergraduate women engineering students describe their creativity and how their lived experiences influenced their decision to major in engineering? The researchers investigated the lived experiences of women engineering students before they entered the engineering major in relation to the way they described themselves as creative. A survey of CSE and beliefs about creativity was administered to 121 undergraduate women engineering students who volunteered for this study. Interviews were conducted of 15 participants selected from survey results with different levels of CSE who met the researcher’s criteria for success in the engineering major. The findings of this study lead to several conclusions: (1) students’ descriptions of themselves as creative corresponded more with the arts than to innovation in engineering; (2) students who described themselves as less creative: (a) had a lower level of CSE; (b) had a greater exposure to engineering in high school through engineering-centered courses and clubs; (c) had a family member who worked in the profession; (d) described more negative classroom experiences at all educational levels that involved intimidation, isolation, and gender-bias. 
    more » « less
  3. Abstract: Underrepresented minorities in engineering regularly experience subtle behaviors or statements that denigrate them on account of their race, ethnicity, gender, or other identity. Engineering students cite these behaviors, known as microaggressions, as reasons for having considered changing majors or leaving college altogether. Despite the recent research trend to foster a more racially, ethnically, and genderinclusive engineering education and profession, previous research does not examine microaggressions in engineering using an intersectional lens. Without an intersectional perspective, intragroup diversity is overlooked, increasing the potential to reinforce broad racial and gender stereotypes. To measure the effects of microaggressions among engineering undergraduate students, the current study used an intersectional approach and collected data from a predominantly white institution (PWI) and from a historically black colleges and universities (HBCUs). The authors conducted individual semistructured interviews to examine the effects of microaggressions among 42 engineering undergraduate students, who can be categorized into seven intersectional identities—White women, African American men, African American women, Asian men, Asian women, Latino men, and Latina women. Results showed five macroeffects and two microeffects—(1) reduced self-belief (reduced self-efficacy and reduced self-esteem), (2) otherness, (3) racial/gender isolation, (4) stereotype threat, and (5) and empowered sense of self. Also, in this work, we make comparisons across intersectional identities. The data provide support for further study of microaggressions and their effects on intersectional identities. This research extends the intersectional approach to focus on engineering departments and colleges and provides information to engineering departments and university administrators concerning the experiences of minority undergraduates and offers academic leaders further information regarding issues surrounding minority student retention and persistence. DOI: 10.1061/(ASCE)ME.1943-5479.0000889. © 2021 American Society of Civil Engineers. 
    more » « less
  4. N/A (Ed.)
    In 2019, women made up about half of the U.S. workforce but only 27% of the science, technology, engineering and math (STEM) workforce, according to the U.S. Census Bureau. Women pursuing careers in STEM workforces often face gender bias, discrimination, and harassment, yet seldom receive instruction on how to best handle such issues. The National Science Foundation-funded NAVIGATE Project aims to address this situation by providing women STEM graduate students with educational materials on how to recognize and confront discrimination, both interpersonally and organizationally. The skills-based program uses a case study approach, which promotes the internalization of learning and the development of analytical and decision-making skills, as well as proficiency in oral communication and teamwork. Each case study is coupled with discussion questions for individual and group reflection, as well as a complete facilitation guide with possible answers for those leading the training, to promote meaningful engagement with the material. The NAVIGATE facilitators will lead workshop participants through this novel case study approach to supporting the career persistence by women in STEM. The session will include research on the role change agents play in retaining women in STEM. It will also give participants opportunities to work collectively to strategize on how to impart graduate students with the skills necessary to (1) recognize gender bias, harassment and discrimination when encountered, and (2) act to overcome career adversity created by gender bias, harassment, and discrimination to persist in their STEM careers and become transformational leaders in their fields. 
    more » « less
  5. Background/Context: After-school programs that focus on integrating computer programming and mathematics in authentic environments are seldomly accessible to students from culturally and linguistically diverse backgrounds, particularly bilingual Latina students in rural contexts. Providing a context that broadens Latina students’ participation in mathematics and computer programming requires educators to carefully examine how verbal and nonverbal language is used to interact and to position students as they learn new concepts in middle school. This is also an important stage for adolescents because they are likely to make decisions about their future careers in STEM. Having access to discourse and teaching practices that invite students to participate in mathematics and computer programming affords them opportunities to engage with these fields. Purpose/Focus of Study: This case study analyzes how small-group interactions mediated the positionings of Cindy, a bilingual Latina, as she learned binary numbers in an after-school program that integrated computer programming and mathematics (CPM). Setting: The Advancing Out-of-School Learning in Mathematics and Engineering (AOLME) program was held in a rural bilingual (Spanish and English) middle school in the Southwest. The after-school program was designed to provide experiences for primarily Latinx students to learn how to integrate mathematics with computer programming using Raspberry Pi and Python as a platform. Our case study explores how Cindy was positioned as she interacted with two undergraduate engineering students who served as facilitators while learning binary numbers with a group of three middle school students. Research Design: This single intrinsic case focused on exploring how small-group interactions among four students mediated Cindy’s positionings as she learned binary numbers through her participation in AOLME. Data sources included twelve 90-minute video sessions and Cindy’s journal and curriculum binder. Video logs were created, and transcripts were coded to describe verbal and nonverbal interactions among the facilitators and Cindy. Analysis of select episodes was conducted using systemic functional linguistics (SFL), specifically language modality, to identify how positioning took place. These episodes and positioning analysis describe how Cindy, with others, navigated the process of learning binary numbers under the stereotype that female students are not as good at mathematics as male students. Findings: From our analysis, three themes that emerged from the data portray Cindy’s experiences learning binary numbers. The major themes are: (1) Cindy’s struggle to reveal her understanding of binary numbers in a competitive context, (2) Cindy’s use of “fake it until you make it” to hide her cognitive dissonance, and (3) the use of Spanish and peers’ support to resolve Cindy’s understanding of binary numbers. The positioning patterns observed help us learn how, when Cindy’s bilingualism was viewed and promoted as an asset, this social context worked as a generative axis that addressed the challenges of learning binary numbers. The contrasting episodes highlight the facilitators’ productive teaching strategies and relations that nurtured Cindy’s social and intellectual participation in CPM. Conclusions/Recommendations: Cindy’s case demonstrates how the facilitator’s teaching, and participants’ interactions and discourse practices contributed to her qualitatively different positionings while she learned binary numbers, and how she persevered in this process. Analysis of communication acts supported our understanding of how Cindy’s positionings underpinned the discourse; how the facilitators’ and students’ discourse formed, shaped, or shifted Cindy’s positioning; and how discourse was larger than gender storylines that went beyond classroom interactions. Cindy’s case reveals the danger of placing students in “struggle” instead of a “productive struggle.” The findings illustrated that when Cindy was placed in struggle when confronting responding moves by the facilitator, her “safe” reaction was hiding and avoiding. In contrast, we also learned about the importance of empathetic, nurturing supporting responses that encourage students’ productive struggle to do better. We invite instructors to notice students’ hiding or avoiding and consider Cindy’s case. Furthermore, we recommend that teachers notice their choice of language because this is important in terms of positioning students. We also highlight Cindy’s agency as she chose to take up her friend’s suggestion to “fake it” rather than give up. 
    more » « less